Search results
Results from the WOW.Com Content Network
Metals react with acids to form salts and hydrogen gas. Liberation of hydrogen gas when zinc reacts with hydrochloric acid. + () + [2] [3] However, less reactive metals cannot displace the hydrogen from acids. [3] (They may react with oxidizing acids though.)
Dilute hydrochloric acid can be used in place of dilute sulfuric acid. A replacement reaction where gaseous hydrogen chloride and fluorine gas react to release diatomic chlorine gas (because fluorine is more electronegative ):
The reaction of zinc with water is slowed by this passive layer. When this layer is corroded by acids such as hydrochloric acid and sulfuric acid, the reaction proceeds with the evolution of hydrogen gas. [1] [9] Zn + 2 H + → Zn 2+ + H 2. Zinc reacts with alkalis as with acids.
The reaction is effected with zinc. The key zinc-intermediate formed is a carbenoid (iodomethyl)zinc iodide which reacts with alkenes to afford the cyclopropanated product. The rate of forming the active zinc species is increased via ultrasonication since the initial reaction occurs at the surface of the metal.
This reaction usually produces a salt. One example, hydrochloric acid reacts with disodium iron tetracarbonyl to produce the iron dihydride: 2 HCl + Na 2 Fe(CO) 4 → 2 NaCl + H 2 Fe(CO) 4. Reaction between an acid and a carbonate or bicarbonate salt yields carbonic acid, which spontaneously decomposes into carbon dioxide and water. The release ...
For example, comparing the potentials for zinc (-0.75 V) with those of iron (Fe(II) -0.47 V, Fe(III) -0.06 V) it is seen that iron ions are more easily reduced than zinc ions. This is the basis for using zinc to provide anodic protection for large structures made of iron or to protect small structures by galvanization.
The Frankland-Duppa Reaction in which an oxalate ester (ROCOCOOR) reacts with an alkyl halide R'X, zinc and hydrochloric acid to form α-hydroxycarboxylic esters RR'COHCOOR [169] [170] Organozincs have similar reactivity to Grignard reagents but are much less nucleophilic, and they are expensive and difficult to handle.
Zinc smelting has historically been more difficult than the smelting of other metals, e.g. iron, because in contrast, zinc has a low boiling point. At temperatures typically used for smelting metals, zinc is a gas that will escape from a furnace with the flue gas and be lost, unless specific measures are taken to prevent it.