Search results
Results from the WOW.Com Content Network
For a graph with n vertices, h of which are fixed in position on the outer face, there are two equations for each interior vertex and also two unknowns (the coordinates) for each interior vertex. Therefore, this gives a system of linear equations with 2( n − h ) equations in 2( n − h ) unknowns, the solution to which is a Tutte embedding.
In many fields, equilibria or stability are fundamental concepts that can be described in terms of fixed points. Some examples follow. In projective geometry, a fixed point of a projectivity has been called a double point. [8] [9] In economics, a Nash equilibrium of a game is a fixed point of the game's best response correspondence.
If a fast time to first fix (TTFF) is needed, it is possible to upload a valid ephemeris to a receiver, and in addition to setting the time, a position fix can be obtained in under ten seconds. It is feasible to put such ephemeris data on the web so it can be loaded into mobile GPS devices. [ 6 ]
The fixed point iteration x n+1 = cos x n with initial value x 1 = −1.. An attracting fixed point of a function f is a fixed point x fix of f with a neighborhood U of "close enough" points around x fix such that for any value of x in U, the fixed-point iteration sequence , (), (()), ((())), … is contained in U and converges to x fix.
The function: () = [/, /], shown on the figure at the right, satisfies all Kakutani's conditions, and indeed it has many fixed points: any point on the 45° line (dotted line in red) which intersects the graph of the function (shaded in grey) is a fixed point, so in fact there is an infinity of fixed points in this particular case.
Force-directed graph drawing algorithms assign forces among the set of edges and the set of nodes of a graph drawing.Typically, spring-like attractive forces based on Hooke's law are used to attract pairs of endpoints of the graph's edges towards each other, while simultaneously repulsive forces like those of electrically charged particles based on Coulomb's law are used to separate all pairs ...
For example, the Iimura-Murota-Tamura theorem states that (in particular) if is a function from a rectangle subset of to itself, and is hypercubic direction-preserving, then has a fixed point. Let f {\displaystyle f} be a direction-preserving function from the integer cube { 1 , … , n } d {\displaystyle \{1,\dots ,n\}^{d}} to itself.
The Banach fixed-point theorem (1922) gives a general criterion guaranteeing that, if it is satisfied, the procedure of iterating a function yields a fixed point. [2]By contrast, the Brouwer fixed-point theorem (1911) is a non-constructive result: it says that any continuous function from the closed unit ball in n-dimensional Euclidean space to itself must have a fixed point, [3] but it doesn ...