Search results
Results from the WOW.Com Content Network
In chemistry, iron(III) or ferric refers to the element iron in its +3 oxidation state. Ferric chloride is an alternative name for iron(III) chloride (FeCl 3).
Iron(II,III) oxide, or black iron oxide, is the chemical compound with formula Fe 3 O 4. It occurs in nature as the mineral magnetite . It is one of a number of iron oxides , the others being iron(II) oxide (FeO), which is rare, and iron(III) oxide (Fe 2 O 3 ) which also occurs naturally as the mineral hematite .
Iron(III) oxide is a product of the oxidation of iron. It can be prepared in the laboratory by electrolyzing a solution of sodium bicarbonate, an inert electrolyte, with an iron anode: 4 Fe + 3 O 2 + 2 H 2 O → 4 FeO(OH) The resulting hydrated iron(III) oxide, written here as FeO(OH), dehydrates around 200 °C. [18] [19] 2 FeO(OH) → Fe 2 O 3 ...
Iron(II) chloride tetrahydrate, FeCl 2 ·4H 2 O. In chemistry, iron(II) refers to the element iron in its +2 oxidation state. The adjective ferrous or the prefix ferro-is often used to specify such compounds, as in ferrous chloride for iron(II) chloride (FeCl 2). The adjective ferric is used instead for iron(III) salts, containing the cation Fe 3+.
The iron compounds produced on the largest scale in industry are iron(II) sulfate (FeSO 4 ·7H 2 O) and iron(III) chloride (FeCl 3). The former is one of the most readily available sources of iron(II), but is less stable to aerial oxidation than Mohr's salt ((NH 4) 2 Fe(SO 4) 2 ·6H 2 O). Iron(II) compounds tend to be oxidized to iron(III ...
Human iron metabolism is the set of chemical reactions that maintain human homeostasis of iron at the systemic and cellular level. Iron is both necessary to the body and potentially toxic. Controlling iron levels in the body is a critically important part of many aspects of human health and disease.
Iron is a chemical element; it has the symbol Fe (from Latin ferrum 'iron') and atomic number 26. It is a metal that belongs to the first transition series and group 8 of the periodic table. It is, by mass, the most common element on Earth, forming much of Earth's outer and inner core.
For chemical reactions, the iron oxide cycle (Fe 3 O 4 /FeO) is the original two-step thermochemical cycle proposed for use for hydrogen production. [1] It is based on the reduction and subsequent oxidation of iron ions, particularly the reduction and oxidation between Fe 3+ and Fe 2+ .