Search results
Results from the WOW.Com Content Network
Cycle graph, a graph that consists of a single cycle; Chordal graph, a graph in which every induced cycle is a triangle; Directed acyclic graph, a directed graph with no directed cycles; Forest, a cycle-free graph; Line perfect graph, a graph in which every odd cycle is a triangle; Perfect graph, a graph with no induced cycles or their ...
A directed cycle graph of length 8. A directed cycle graph is a directed version of a cycle graph, with all the edges being oriented in the same direction. In a directed graph, a set of edges which contains at least one edge (or arc) from each directed cycle is called a feedback arc set.
In graph theory, a branch of mathematics, a cycle basis of an undirected graph is a set of simple cycles that forms a basis of the cycle space of the graph. That is, it is a minimal set of cycles that allows every even-degree subgraph to be expressed as a symmetric difference of basis cycles.
A Hamiltonian cycle, Hamiltonian circuit, vertex tour or graph cycle is a cycle that visits each vertex exactly once. A graph that contains a Hamiltonian cycle is called a Hamiltonian graph . Similar notions may be defined for directed graphs , where each edge (arc) of a path or cycle can only be traced in a single direction (i.e., the vertices ...
A three-dimensional hypercube graph showing a Hamiltonian path in red, and a longest induced path in bold black. In graph theory, a path in a graph is a finite or infinite sequence of edges which joins a sequence of vertices which, by most definitions, are all distinct (and since the vertices are distinct, so are the edges).
The circuit rank controls the number of ears in an ear decomposition of a graph, a partition of the edges of the graph into paths and cycles that is useful in many graph algorithms. In particular, a graph is 2-vertex-connected if and only if it has an open ear decomposition. This is a sequence of subgraphs, where the first subgraph is a simple ...
In mathematics, a cyclic graph may mean a graph that contains a cycle, or a graph that is a cycle, with varying definitions of cycles. See: Cycle (graph theory), a cycle in a graph; Forest (graph theory), an undirected graph with no cycles; Biconnected graph, an undirected graph in which every edge belongs to a cycle
A peripheral cycle in a graph can be defined formally in one of several equivalent ways: . is peripheral if it is a simple cycle in a connected graph with the property that, for every two edges and in , there exists a path in that starts with , ends with , and has no interior vertices belonging to .