Search results
Results from the WOW.Com Content Network
The thylakoid membranes of higher plants are composed primarily of phospholipids [5] and galactolipids that are asymmetrically arranged along and across the membranes. [6] Thylakoid membranes are richer in galactolipids rather than phospholipids; also they predominantly consist of hexagonal phase II forming monogalacotosyl diglyceride lipid.
Photosystems are found in the thylakoid membranes of plants, algae, and cyanobacteria. These membranes are located inside the chloroplasts of plants and algae, and in the cytoplasmic membrane of photosynthetic bacteria. There are two kinds of photosystems: PSI and PSII.
In red light, this is replaced by blue colored phycocyanin, which absorbs red light better. This reversible process is known as complementary chromatic adaptation. It is the component of photosynthetic system of cyanobacteria, as a particle with which various structures are linked (i.e. thylakoid membrane, etc.). [citation needed]
A lamella (pl.: lamellae) in biology refers to a thin layer, membrane or plate of tissue. [1] This is a very broad definition, and can refer to many different structures. Any thin layer of organic tissue can be called a lamella and there is a wide array of functions an individual layer can serve.
Photosynthetic reaction centre proteins are main protein components of photosynthetic reaction centres (RCs) of bacteria and plants. They are transmembrane proteins embedded in the chloroplast thylakoid or bacterial cell membrane. Plants, algae, and cyanobacteria have one type of PRC for each of its two photosystems.
The plasma membrane or bacterial cytoplasmic membrane is composed of a phospholipid bilayer and thus has all of the general functions of a cell membrane such as acting as a permeability barrier for most molecules and serving as the location for the transport of molecules into the cell.
In bacteria, the Tat system exports proteins from the cytoplasm across the inner cell membrane; whereas in chloroplasts, it is present in the thylakoid membrane where it aids the import of proteins from the stroma. [13] Tat proteins are highly variable in different bacteria and are classified into three major types, namely TatA, TatB, and TatC.
In the plant thylakoid membrane and in Gram-negative bacteria the Tat translocase is composed of three essential membrane proteins; TatA, TatB, and TatC. In the most widely studied Tat pathway, that of the Gram-negative bacterium Escherichia coli, these three proteins are expressed from an operon with a fourth Tat protein, TatD, which is not ...