enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Fortuna (PRNG) - Wikipedia

    en.wikipedia.org/wiki/Fortuna_(PRNG)

    Fortuna is a cryptographically secure pseudorandom number generator (CS-PRNG) devised by Bruce Schneier and Niels Ferguson and published in 2003. It is named after Fortuna, the Roman goddess of chance. FreeBSD uses Fortuna for /dev/random and /dev/urandom is symbolically linked to it since FreeBSD 11. [1] Apple OSes have switched to Fortuna ...

  3. List of random number generators - Wikipedia

    en.wikipedia.org/wiki/List_of_random_number...

    Default generator in R and the Python language starting from version 2.3. Xorshift: 2003 G. Marsaglia [26] It is a very fast sub-type of LFSR generators. Marsaglia also suggested as an improvement the xorwow generator, in which the output of a xorshift generator is added with a Weyl sequence.

  4. ACORN (random number generator) - Wikipedia

    en.wikipedia.org/.../ACORN_(random_number_generator)

    In 1992, further results were published, [11] implementing the ACORN Pseudo-Random Number Generator in exact integer arithmetic which ensures reproducibility across different platforms and languages, and stating that for arbitrary real-precision arithmetic it is possible to prove convergence of the ACORN sequence to k-distributed as the ...

  5. Cryptographically secure pseudorandom number generator

    en.wikipedia.org/wiki/Cryptographically_secure...

    In the asymptotic setting, a family of deterministic polynomial time computable functions : {,} {,} for some polynomial p, is a pseudorandom number generator (PRNG, or PRG in some references), if it stretches the length of its input (() > for any k), and if its output is computationally indistinguishable from true randomness, i.e. for any probabilistic polynomial time algorithm A, which ...

  6. Lamport signature - Wikipedia

    en.wikipedia.org/wiki/Lamport_signature

    To create the private key Alice uses the random number generator to produce 256 pairs of random numbers (2×256 numbers in total), each number being 256 bits in size, that is, a total of 2×256×256 bits = 128 Kibit in total. This is her private key and she will store it away in a secure place for later use.

  7. Pseudorandom number generator - Wikipedia

    en.wikipedia.org/wiki/Pseudorandom_number_generator

    It can be shown that if is a pseudo-random number generator for the uniform distribution on (,) and if is the CDF of some given probability distribution , then is a pseudo-random number generator for , where : (,) is the percentile of , i.e. ():= {: ()}. Intuitively, an arbitrary distribution can be simulated from a simulation of the standard ...

  8. Schnorr signature - Wikipedia

    en.wikipedia.org/wiki/Schnorr_signature

    All users of the signature scheme agree on a group of prime order with generator in which the discrete log problem is assumed to be hard. Typically a Schnorr group is used. All users agree on a cryptographic hash function H : { 0 , 1 } ∗ → Z / q Z {\displaystyle H:\{0,1\}^{*}\rightarrow \mathbb {Z} /q\mathbb {Z} } .

  9. Category : Cryptographically secure pseudorandom number ...

    en.wikipedia.org/wiki/Category:Cryptographically...

    A cryptographically secure pseudo-random number generator (CSPRNG) is a pseudo-random number generator (PRNG) with properties that make it suitable for use in cryptography. See cryptographically secure pseudorandom number generator .