Search results
Results from the WOW.Com Content Network
Gastrulation in frogs commences in the marginal zone— the region encircling the blastula's equator where the animal and vegetal hemispheres meet—differing from sea urchins where it begins in the most vegetal part. In contrast to the vegetal blastomeres, the endodermal cells in the marginal zone of frogs are smaller and contain less yolk. [2]
Before gastrulation, the embryo is a continuous epithelial sheet of cells; by the end of gastrulation, the embryo has begun differentiation to establish distinct cell lineages, set up the basic axes of the body (e.g. dorsal–ventral, anterior–posterior), and internalized one or more cell types including the prospective gut.
Frog (Xenopus), as well as other amphibian, gastrulation serves as an excellent example of the role of convergent extension in embryogenesis. During gastrulation in frogs, the driving force of convergent extension is the morphogenic activity of the presumptive dorsal mesodermal cells; this activity is driven by the mesenchymal cells that lie ...
Gastrulation then continues along the ventroposterior blastopore lip and posterior streak region, from where cells contribute to ventral and posterior mesoderm. Adding to this, Brachyury and caudal homologues are expressed circumferentially around the blastopore lips in the frog, and along the primitive streak in chick and mouse. This would ...
During gastrulation cells migrate to the interior of the blastula, subsequently forming two (in diploblastic animals) or three (triploblastic) germ layers. The embryo during this process is called a gastrula. The germ layers are referred to as the ectoderm, mesoderm and endoderm.
Print/export Download as PDF; Printable version; In other projects ... Pages in category "Gastrulation" The following 11 pages are in this category, out of 11 total.
An illustration of vegetal rotation movements. Vegetal rotation is a morphogenetic movement that drives mesoderm internalization during gastrulation in amphibian embryos. [1] The internalization of vegetal cells prior to gastrulation was first observed in the 1930s by Abraham Mandel Schechtman through the use of vital dye labeling experiments in Triturus torosus embryos. [2]
Organogenesis is the phase of embryonic development that starts at the end of gastrulation and continues until birth. During organogenesis, the three germ layers formed from gastrulation (the ectoderm, endoderm, and mesoderm) form the internal organs of the organism. [1] The endoderm of vertebrates produces tissue within the lungs, thyroid, and ...