enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Bayesian programming - Wikipedia

    en.wikipedia.org/wiki/Bayesian_programming

    where the first equality results from the marginalization rule, the second results from Bayes' theorem and the third corresponds to a second application of marginalization. The denominator appears to be a normalization term and can be replaced by a constant . Theoretically, this allows to solve any Bayesian inference problem.

  3. Bayes error rate - Wikipedia

    en.wikipedia.org/wiki/Bayes_error_rate

    This statistics -related article is a stub. You can help Wikipedia by expanding it.

  4. Naive Bayes classifier - Wikipedia

    en.wikipedia.org/wiki/Naive_Bayes_classifier

    Example of a naive Bayes classifier depicted as a Bayesian Network. In statistics, naive Bayes classifiers are a family of linear "probabilistic classifiers" which assumes that the features are conditionally independent, given the target class. The strength (naivety) of this assumption is what gives the classifier its name.

  5. Probably approximately correct learning - Wikipedia

    en.wikipedia.org/wiki/Probably_approximately...

    For the following definitions, two examples will be used. The first is the problem of character recognition given an array of bits encoding a binary-valued image. The other example is the problem of finding an interval that will correctly classify points within the interval as positive and the points outside of the range as negative.

  6. Loss functions for classification - Wikipedia

    en.wikipedia.org/wiki/Loss_functions_for...

    The theory makes it clear that when a learning rate of is used, the correct formula for retrieving the posterior probability is now = (()). In conclusion, by choosing a loss function with larger margin (smaller γ {\displaystyle \gamma } ) we increase regularization and improve our estimates of the posterior probability which in turn improves ...

  7. Log probability - Wikipedia

    en.wikipedia.org/wiki/Log_probability

    The logarithm function is not defined for zero, so log probabilities can only represent non-zero probabilities. Since the logarithm of a number in (,) interval is negative, often the negative log probabilities are used. In that case the log probabilities in the following formulas would be inverted.

  8. Bayesian experimental design - Wikipedia

    en.wikipedia.org/wiki/Bayesian_experimental_design

    Bayesian experimental design provides a general probability-theoretical framework from which other theories on experimental design can be derived. It is based on Bayesian inference to interpret the observations/data acquired during the experiment. This allows accounting for both any prior knowledge on the parameters to be determined as well as ...

  9. An Essay Towards Solving a Problem in the Doctrine of Chances

    en.wikipedia.org/wiki/An_Essay_towards_solving_a...

    The essay includes theorems of conditional probability which form the basis of what is now called Bayes's Theorem, together with a detailed treatment of the problem of setting a prior probability. Bayes supposed a sequence of independent experiments, each having as its outcome either success or failure, the probability of success being some ...