Search results
Results from the WOW.Com Content Network
The user can search for elements in an associative array, and delete elements from the array. The following shows how multi-dimensional associative arrays can be simulated in standard AWK using concatenation and the built-in string-separator variable SUBSEP:
The most frequently used general-purpose implementation of an associative array is with a hash table: an array combined with a hash function that separates each key into a separate "bucket" of the array. The basic idea behind a hash table is that accessing an element of an array via its index is a simple, constant-time operation.
For any fixed set of keys, using a universal family guarantees the following properties.. For any fixed in , the expected number of keys in the bin () is /.When implementing hash tables by chaining, this number is proportional to the expected running time of an operation involving the key (for example a query, insertion or deletion).
In a well-dimensioned hash table, the average time complexity for each lookup is independent of the number of elements stored in the table. Many hash table designs also allow arbitrary insertions and deletions of key–value pairs, at amortized constant average cost per operation. [3] [4] [5] Hashing is an example of a space-time tradeoff.
Create a two-dimensional 2 r × t array, T, and fill it with random q-bit numbers. Now T can be used to compute the hash value h(x) of any given key x. To do so, partition x into r-bit values, where x 0 consists of the lowest r bits of x, x 1 consists of the next r bits, etc. For example, if r = 8, then x i is just the ith byte of x.
A perfect hash function for the four names shown A minimal perfect hash function for the four names shown. In computer science, a perfect hash function h for a set S is a hash function that maps distinct elements in S to a set of m integers, with no collisions. In mathematical terms, it is an injective function.
The algorithm can be described by the following pseudocode, which computes the hash of message C using the permutation table T: algorithm pearson hashing is h := 0 for each c in C loop h := T[ h xor c ] end loop return h The hash variable (h) may be initialized differently, e.g. to the length of the data (C) modulo 256.
A hash array mapped trie [1] (HAMT) is an implementation of an associative array that combines the characteristics of a hash table and an array mapped trie. [1] It is a refined version of the more general notion of a hash tree.