Search results
Results from the WOW.Com Content Network
Describe the differences in proportions using the rule of thumb criteria set out by Cohen. [1] Namely, h = 0.2 is a "small" difference, h = 0.5 is a "medium" difference, and h = 0.8 is a "large" difference. [2] [3] Only discuss differences that have h greater than some threshold value, such as 0.2. [4]
This is the smallest value for which we care about observing a difference. Now, for (1) to reject H 0 with a probability of at least 1 − β when H a is true (i.e. a power of 1 − β), and (2) reject H 0 with probability α when H 0 is true, the following is necessary: If z α is the upper α percentage point of the standard normal ...
The actual difference is not usually a good way to compare the numbers, in particular because it depends on the unit of measurement. For instance, 1 m is the same as 100 cm, but the absolute difference between 2 and 1 m is 1 while the absolute difference between 200 and 100 cm is 100, giving the impression of a larger difference. [4]
Zeros between two significant non-zero digits are significant (significant trapped zeros). 101.12003 consists of eight significant figures if the resolution is to 0.00001. 125.340006 has seven significant figures if the resolution is to 0.0001: 1, 2, 5, 3, 4, 0, and 0.
For example, 1 and 1.02 are within an order of magnitude. So are 1 and 2, 1 and 9, or 1 and 0.2. However, 1 and 15 are not within an order of magnitude, since their ratio is 15/1 = 15 > 10. The reciprocal ratio, 1/15, is less than 0.1, so the same result is obtained.
In the social sciences, a result may be considered statistically significant if its confidence level is of the order of a two-sigma effect (95%), while in particle physics and astrophysics, there is a convention of requiring statistical significance of a five-sigma effect (99.99994% confidence) to qualify as a discovery.
In some disciplines, the RMSD is used to compare differences between two things that may vary, neither of which is accepted as the "standard". For example, when measuring the average difference between two time series x 1 , t {\displaystyle x_{1,t}} and x 2 , t {\displaystyle x_{2,t}} , the formula becomes
In numerical analysis, catastrophic cancellation [1] [2] is the phenomenon that subtracting good approximations to two nearby numbers may yield a very bad approximation to the difference of the original numbers.