Search results
Results from the WOW.Com Content Network
Oxygen-13 is an unstable isotope, with 8 protons and 5 neutrons. It has spin 3/2−, and half-life 8.58(5) ms. Its atomic mass is 13.024 815 (10) Da. It decays to nitrogen-13 by electron capture, with a decay energy of 17.770(10) MeV. Its parent nuclide is fluorine-14.
This is a list of radioactive nuclides (sometimes also called isotopes), ordered by half-life from shortest to longest, in seconds, minutes, hours, days and years. Current methods make it difficult to measure half-lives between approximately 10 −19 and 10 −10 seconds.
Oxygen-18 (18 O, Ω [1]) is a natural, stable isotope of oxygen and one of the environmental isotopes. 18 O is an important precursor for the production of fluorodeoxyglucose (FDG) used in positron emission tomography (PET). Generally, in the radiopharmaceutical industry, enriched water (H
The darker more stable isotope region departs from the line of protons (Z) = neutrons (N), as the element number Z becomes larger. This is a list of chemical elements by the stability of their isotopes. Of the first 82 elements in the periodic table, 80 have isotopes considered to be stable. [1] Overall, there are 251 known stable isotopes in ...
Oxygen (chemical symbol O) has three naturally occurring isotopes: 16 O, 17 O, and 18 O, where the 16, 17 and 18 refer to the atomic mass.The most abundant is 16 O, with a small percentage of 18 O and an even smaller percentage of 17 O. Oxygen isotope analysis considers only the ratio of 18 O to 16 O present in a sample.
Naturally occurring oxygen is composed of three stable isotopes, 16 O, 17 O, and 18 O, with 16 O being the most abundant (99.762% natural abundance). [60] Most 16 O is synthesized at the end of the helium fusion process in massive stars but some is made in the neon burning process.
Pages in category "Isotopes of oxygen" The following 22 pages are in this category, out of 22 total. This list may not reflect recent changes. ...
The organic oxygen-18 pharmaceutical molecule is not made before the production of the radiopharmaceutical, as high energy protons destroy such molecules . Radiopharmaceuticals using fluorine must therefore be synthesized after the fluorine-18 has been produced.