enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Chandy–Misra–Haas algorithm resource model - Wikipedia

    en.wikipedia.org/wiki/Chandy–Misra–Haas...

    occurrence of deadlock in distributed system. P 1 initiates deadlock detection. C 1 sends the probe saying P 2 depends on P 3. Once the message is received by C 2, it checks whether P 3 is idle. P 3 is idle because it is locally dependent on P 4 and updates dependent 3 (2) to True. As above, C 2 sends probe to C 3 and C 3 sends probe to C 1.

  3. Thread safety - Wikipedia

    en.wikipedia.org/wiki/Thread_safety

    However, deadlock-free guarantees cannot always be given, since deadlocks can be caused by callbacks and violation of architectural layering independent of the library itself. Software libraries can provide certain thread-safety guarantees. [5] For example, concurrent reads might be guaranteed to be thread-safe, but concurrent writes might not be.

  4. Lock (computer science) - Wikipedia

    en.wikipedia.org/wiki/Lock_(computer_science)

    For example, a funnel or serializing tokens can avoid the biggest problem: deadlocks. Alternatives to locking include non-blocking synchronization methods, like lock-free programming techniques and transactional memory. However, such alternative methods often require that the actual lock mechanisms be implemented at a more fundamental level of ...

  5. Deadlock (computer science) - Wikipedia

    en.wikipedia.org/wiki/Deadlock_(computer_science)

    Phantom deadlocks are deadlocks that are falsely detected in a distributed system due to system internal delays but do not actually exist. For example, if a process releases a resource R1 and issues a request for R2 , and the first message is lost or delayed, a coordinator (detector of deadlocks) could falsely conclude a deadlock (if the ...

  6. Banker's algorithm - Wikipedia

    en.wikipedia.org/wiki/Banker's_algorithm

    Banker's algorithm is a resource allocation and deadlock avoidance algorithm developed by Edsger Dijkstra that tests for safety by simulating the allocation of predetermined maximum possible amounts of all resources, and then makes an "s-state" check to test for possible deadlock conditions for all other pending activities, before deciding whether allocation should be allowed to continue.

  7. Safety and liveness properties - Wikipedia

    en.wikipedia.org/wiki/Safety_and_liveness_properties

    The good thing in the first example is discrete but not in the others. Producing an answer within a specified real-time bound is a safety property rather than a liveness property. This is because a discrete bad thing is being proscribed: a partial execution that reaches a state where the answer still has not been produced and the value of the ...

  8. Readers–writer lock - Wikipedia

    en.wikipedia.org/wiki/Readers–writer_lock

    Upgrading a lock from read-mode to write-mode is prone to deadlocks, since whenever two threads holding reader locks both attempt to upgrade to writer locks, a deadlock is created that can only be broken by one of the threads releasing its reader lock. The deadlock can be avoided by allowing only one thread to acquire the lock in "read-mode ...

  9. Wait-for graph - Wikipedia

    en.wikipedia.org/wiki/Wait-For_Graph

    A wait-for graph in computer science is a directed graph used for deadlock detection in operating systems and relational database systems.. In computer science, a system that allows concurrent operation of multiple processes and locking of resources and which does not provide mechanisms to avoid or prevent deadlock must support a mechanism to detect deadlocks and an algorithm for recovering ...