enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Cardinal assignment - Wikipedia

    en.wikipedia.org/wiki/Cardinal_assignment

    The goal of a cardinal assignment is to assign to every set A a specific, unique set that is only dependent on the cardinality of A. This is in accordance with Cantor 's original vision of cardinals: to take a set and abstract its elements into canonical "units" and collect these units into another set, such that the only thing special about ...

  3. König's theorem (set theory) - Wikipedia

    en.wikipedia.org/wiki/König's_theorem_(set_theory)

    In set theory, KÅ‘nig's theorem states that if the axiom of choice holds, I is a set, and are cardinal numbers for every i in I, and < for every i in I, then <. The sum here is the cardinality of the disjoint union of the sets m i, and the product is the cardinality of the Cartesian product.

  4. Cantor's theorem - Wikipedia

    en.wikipedia.org/wiki/Cantor's_theorem

    As a consequence, the cardinality of the real numbers, which is the same as that of the power set of the integers, is strictly larger than the cardinality of the integers; see Cardinality of the continuum for details. The theorem is named for Georg Cantor, who first stated and proved it at the end of the 19th century.

  5. Cardinality - Wikipedia

    en.wikipedia.org/wiki/Cardinality

    There are two ways to define the "cardinality of a set": The cardinality of a set A is defined as its equivalence class under equinumerosity. A representative set is designated for each equivalence class. The most common choice is the initial ordinal in that class. This is usually taken as the definition of cardinal number in axiomatic set theory.

  6. Cardinal number - Wikipedia

    en.wikipedia.org/wiki/Cardinal_number

    The notion of cardinality, as now understood, was formulated by Georg Cantor, the originator of set theory, in 1874–1884. Cardinality can be used to compare an aspect of finite sets. For example, the sets {1,2,3} and {4,5,6} are not equal, but have the same cardinality, namely three.

  7. Cardinal function - Wikipedia

    en.wikipedia.org/wiki/Cardinal_function

    Cardinal functions are widely used in topology as a tool for describing various topological properties. [2] [3] Below are some examples.(Note: some authors, arguing that "there are no finite cardinal numbers in general topology", [4] prefer to define the cardinal functions listed below so that they never taken on finite cardinal numbers as values; this requires modifying some of the ...

  8. Continuum (set theory) - Wikipedia

    en.wikipedia.org/wiki/Continuum_(set_theory)

    The cardinality of the continuum is the size of the set of real numbers. The continuum hypothesis is sometimes stated by saying that no cardinality lies between that of the continuum and that of the natural numbers , ℵ 0 {\displaystyle \aleph _{0}} , or alternatively, that c = ℵ 1 {\displaystyle {\mathfrak {c}}=\aleph _{1}} .

  9. Aleph number - Wikipedia

    en.wikipedia.org/wiki/Aleph_number

    The cardinality of the natural numbers is ℵ 0 (read aleph-nought, aleph-zero, or aleph-null), the next larger cardinality of a well-ordered set is aleph-one ℵ 1, then ℵ 2 and so on. Continuing in this manner, it is possible to define a cardinal number ℵ α for every ordinal number α , as described below.