Search results
Results from the WOW.Com Content Network
The three splitters concur at the Nagel point of the triangle. A cleaver of a triangle is a line segment that bisects the perimeter of the triangle and has one endpoint at the midpoint of one of the three sides. So any cleaver, like any splitter, divides the triangle into two paths each of whose length equals the semiperimeter.
In Euclidean geometry, a splitter is a line segment through one of the vertices of a triangle (that is, a cevian) that bisects the perimeter of the triangle. [1] [2] They are not to be confused with cleavers, which also bisect the perimeter but instead emanate from the midpoint of one of the triangle's sides.
The three splitters of a triangle all intersect each other at the Nagel point of the triangle. A cleaver of a triangle is a segment from the midpoint of a side of a triangle to the opposite side such that the perimeter is divided into two equal lengths. The three cleavers of a triangle all intersect each other at the triangle's Spieker center.
For two lines, this forms a circle; for three lines on the sides of an equilateral triangle, with the minimum possible radius, it forms a Reuleaux triangle, and for the lines of a regular star polygon it can form a Reuleaux polygon. [2] [6]
A triangle with sides a, b, and c. In geometry, Heron's formula (or Hero's formula) gives the area of a triangle in terms of the three side lengths , , . Letting be the semiperimeter of the triangle, = (+ +), the area is [1]
If the lengths of the three sides are known then Heron's formula can be used: () () where a, b, c are the sides of the triangle, and = (+ +) is half of its perimeter. [2] If an angle and its two included sides are given, the area is 1 2 a b sin ( C ) {\displaystyle {\tfrac {1}{2}}ab\sin(C)} where C is the given angle and a and b are its ...
A quadrilateral is a square if and only if it is both a rhombus and a rectangle (i.e., four equal sides and four equal angles). Oblong: longer than wide, or wider than long (i.e., a rectangle that is not a square). [5] Kite: two pairs of adjacent sides are of equal length.
The Euler line of a triangle is a line passing through its circumcenter, centroid, and orthocenter, among other points. The incenter generally does not lie on the Euler line; [16] it is on the Euler line only for isosceles triangles, [17] for which the Euler line coincides with the symmetry axis of the triangle and contains all triangle centers.