enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Phenylalanine - Wikipedia

    en.wikipedia.org/wiki/Phenylalanine

    Good sources of phenylalanine are eggs, chicken, liver, beef, milk, and soybeans. [7] Another common source of phenylalanine is anything sweetened with the artificial sweetener aspartame, such as diet drinks, diet foods and medication; the metabolism of aspartame produces phenylalanine as one of the compound's metabolites. [8]

  3. Phenylalanine ammonia-lyase - Wikipedia

    en.wikipedia.org/wiki/Phenylalanine_ammonia-lyase

    The enzyme phenylalanine ammonia lyase (EC 4.3.1.24) catalyzes the conversion of L-phenylalanine to ammonia and trans-cinnamic acid.: [1] L -phenylalanine = trans -cinnamate + NH 3 Phenylalanine ammonia lyase (PAL) is the first and committed step in the phenyl propanoid pathway and is therefore involved in the biosynthesis of the polyphenol ...

  4. Phenylalanine hydroxylase - Wikipedia

    en.wikipedia.org/wiki/Phenylalanine_hydroxylase

    Phenylalanine hydroxylase (PAH) (EC 1.14.16.1) is an enzyme that catalyzes the hydroxylation of the aromatic side-chain of phenylalanine to generate tyrosine.PAH is one of three members of the biopterin-dependent aromatic amino acid hydroxylases, a class of monooxygenase that uses tetrahydrobiopterin (BH 4, a pteridine cofactor) and a non-heme iron for catalysis.

  5. Biopterin-dependent aromatic amino acid hydroxylase - Wikipedia

    en.wikipedia.org/wiki/Biopterin-dependent...

    These enzymes primarily hydroxylate the amino acids L-phenylalanine, L-tyrosine, and L-tryptophan, respectively. The AAAH enzymes are functionally and structurally related proteins which act as rate-limiting catalysts for important metabolic pathways . [ 1 ]

  6. Tyrosine - Wikipedia

    en.wikipedia.org/wiki/Tyrosine

    In addition to the common amino acid L-tyrosine, which is the para isomer (para-tyr, p-tyr or 4-hydroxyphenylalanine), there are two additional regioisomers, namely meta-tyrosine (also known as 3-hydroxyphenylalanine, L-m-tyrosine, and m-tyr) and ortho-tyrosine (o-tyr or 2-hydroxyphenylalanine), that occur in nature.

  7. Phenylpropanoids metabolism - Wikipedia

    en.wikipedia.org/wiki/Phenylpropanoids_metabolism

    In plants, all phenylpropanoids are derived from the amino acids phenylalanine and tyrosine. Phenylalanine ammonia-lyase (PAL, a.k.a. phenylalanine/tyrosine ammonia-lyase) is an enzyme that transforms L-phenylalanine and tyrosine into trans-cinnamic acid and p-coumaric acid, respectively.

  8. Metabolic intermediate - Wikipedia

    en.wikipedia.org/wiki/Metabolic_intermediate

    Metabolic intermediates are compounds produced during the conversion of substrates (starting molecules) into final products in biochemical reactions within cells. [1]Although these intermediates are of relatively minor direct importance to cellular function, they can play important roles in the allosteric regulation of enzymes, glycolysis, the citric acid cycle, and amino acid synthesis.

  9. Fumarylacetoacetate hydrolase - Wikipedia

    en.wikipedia.org/wiki/Fumarylacetoacetate_hydrolase

    Fumarylacetoacetate hydrolase (FAH) is a protein homodimer which cleaves fumarylacetoacetate at its carbon-carbon bond during a hydrolysis reaction. [8] As a critical enzyme in phenylalanine and tyrosine metabolism, 4-Fumarylacetoacetate hydrolase catalyzes the final step in the catabolism of 4-fumarylacetoacetate and water into acetoacetate, fumarate, and H + respectively. [9]