enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Algebraic topology - Wikipedia

    en.wikipedia.org/wiki/Algebraic_topology

    Algebraic topology is a branch of mathematics that uses tools from abstract algebra to study topological spaces. The basic goal is to find algebraic invariants that classify topological spaces up to homeomorphism, though usually most classify up to homotopy equivalence. Although algebraic topology primarily uses algebra to study topological ...

  3. Homotopy - Wikipedia

    en.wikipedia.org/wiki/Homotopy

    The two dashed paths shown above are homotopic relative to their endpoints. The animation represents one possible homotopy. In topology, two continuous functions from one topological space to another are called homotopic (from Ancient Greek: ὁμός homós "same, similar" and τόπος tópos "place") if one can be "continuously deformed" into the other, such a deformation being called a ...

  4. Homology (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Homology_(mathematics)

    In other cases, such as for group homology, there are multiple common methods to compute the same homology groups. In the language of category theory, a homology theory is a type of functor from the category of the mathematical object being studied to the category of abelian groups and group homomorphisms, or more generally to the category ...

  5. Homotopy theory - Wikipedia

    en.wikipedia.org/wiki/Homotopy_theory

    In homotopy theory and algebraic topology, the word "space" denotes a topological space.In order to avoid pathologies, one rarely works with arbitrary spaces; instead, one requires spaces to meet extra constraints, such as being compactly generated weak Hausdorff or a CW complex.

  6. A¹ homotopy theory - Wikipedia

    en.wikipedia.org/wiki/A¹_homotopy_theory

    A 1 homotopy theory is founded on a category called the A 1 homotopy category ().Simply put, the A 1 homotopy category, or rather the canonical functor (), is the universal functor from the category of smooth -schemes towards an infinity category which satisfies Nisnevich descent, such that the affine line A 1 becomes contractible.

  7. Homological algebra - Wikipedia

    en.wikipedia.org/wiki/Homological_algebra

    Homological algebra is the branch of mathematics that studies homology in a general algebraic setting. It is a relatively young discipline, whose origins can be traced to investigations in combinatorial topology (a precursor to algebraic topology ) and abstract algebra (theory of modules and syzygies ) at the end of the 19th century, chiefly by ...

  8. Homotopy group - Wikipedia

    en.wikipedia.org/wiki/Homotopy_group

    Calculation of homotopy groups is in general much more difficult than some of the other homotopy invariants learned in algebraic topology. Unlike the Seifert–van Kampen theorem for the fundamental group and the excision theorem for singular homology and cohomology , there is no simple known way to calculate the homotopy groups of a space by ...

  9. Homotopical connectivity - Wikipedia

    en.wikipedia.org/wiki/Homotopical_connectivity

    A simply connected map (1-connected map) is one that is an isomorphism on path components (0th homotopy group) and onto the fundamental group (1st homotopy group). n -connectivity for spaces can in turn be defined in terms of n -connectivity of maps: a space X with basepoint x 0 is an n -connected space if and only if the inclusion of the ...