Search results
Results from the WOW.Com Content Network
The exponential of a Metzler (or quasipositive) matrix is a nonnegative matrix because of the corresponding property for the exponential of a nonnegative matrix. This is natural, once one observes that the generator matrices of continuous-time Markov chains are always Metzler matrices, and that probability distributions are always non-negative.
A matrix () is called a fundamental matrix solution if the columns form a basis of the solution set. A matrix Φ ( t ) {\displaystyle \Phi (t)} is called a principal fundamental matrix solution if all columns are linearly independent solutions and there exists t 0 {\displaystyle t_{0}} such that Φ ( t 0 ) {\displaystyle \Phi (t_{0})} is the ...
In the control system theory, the Routh–Hurwitz stability criterion is a mathematical test that is a necessary and sufficient condition for the stability of a linear time-invariant (LTI) dynamical system or control system. A stable system is one whose output signal is bounded; the position, velocity or energy do not increase to infinity as ...
In the former case, the orbit is called stable; in the latter case, it is called asymptotically stable and the given orbit is said to be attracting. An equilibrium solution f e {\displaystyle f_{e}} to an autonomous system of first order ordinary differential equations is called:
Von Neumann stability analysis is a commonly used procedure for the stability analysis of finite difference schemes as applied to linear partial differential equations. These results do not hold for nonlinear PDEs, where a general, consistent definition of stability is complicated by many properties absent in linear equations.
The multivariate stable distribution defines linear relations between stable distribution marginals. [clarification needed] In the same way as for the univariate case, the distribution is defined in terms of its characteristic function. The multivariate stable distribution can also be thought as an extension of the multivariate normal distribution.
A linear system is BIBO stable if its characteristic polynomial is stable. The denominator is required to be Hurwitz stable if the system is in continuous-time and Schur stable if it is in discrete-time. In practice, stability is determined by applying any one of several stability criteria.
An important technique in evaluation since at least the early 1990s is the use of piece-square tables (also called piece-value tables) for evaluation. [11] [12] Each table is a set of 64 values corresponding to the squares of the chessboard. The most basic implementation of piece-square table consists of separate tables for each type of piece ...