Search results
Results from the WOW.Com Content Network
In statistics, interval estimation is the use of sample data to estimate an interval of possible values of a parameter of interest. This is in contrast to point estimation, which gives a single value. [1] The most prevalent forms of interval estimation are confidence intervals (a frequentist method) and credible intervals (a Bayesian method). [2]
a) The expression inside the square root has to be positive, or else the resulting interval will be imaginary. b) When g is very close to 1, the confidence interval is infinite. c) When g is greater than 1, the overall divisor outside the square brackets is negative and the confidence interval is exclusive.
In statistics, the Behrens–Fisher problem, named after Walter-Ulrich Behrens and Ronald Fisher, is the problem of interval estimation and hypothesis testing concerning the difference between the means of two normally distributed populations when the variances of the two populations are not assumed to be equal, based on two independent samples.
The concept of fiducial inference can be outlined by comparing its treatment of the problem of interval estimation in relation to other modes of statistical inference. A confidence interval , in frequentist inference , with coverage probability γ has the interpretation that among all confidence intervals computed by the same method, a ...
Approximate estimate of the value range. The so-called "dependency" problem is a major obstacle to the application of interval arithmetic. Although interval methods can determine the range of elementary arithmetic operations and functions very accurately, this is not always true with more complicated functions.
In statistics, asymptotic theory, or large sample theory, is a framework for assessing properties of estimators and statistical tests.Within this framework, it is often assumed that the sample size n may grow indefinitely; the properties of estimators and tests are then evaluated under the limit of n → ∞.
The multiple comparisons problem also applies to confidence intervals. A single confidence interval with a 95% coverage probability level will contain the true value of the parameter in 95% of samples. However, if one considers 100 confidence intervals simultaneously, each with 95% coverage probability, the expected number of non-covering ...
All classical statistical procedures are constructed using statistics which depend only on observable random vectors, whereas generalized estimators, tests, and confidence intervals used in exact statistics take advantage of the observable random vectors and the observed values both, as in the Bayesian approach but without having to treat constant parameters as random variables.