Search results
Results from the WOW.Com Content Network
Chemical looping uses a metal oxide as a solid oxygen carrier. These metal oxide particles replace air (specifically oxygen in the air) in a combustion reaction with a solid, liquid, or gaseous fuel in a fluidized bed, producing solid metal particles from the reduction of the metal oxides and a mixture of carbon dioxide and water vapor, the ...
Particle-laden flows refers to a class of two-phase fluid flow, in which one of the phases is continuously connected (referred to as the continuous or carrier phase) and the other phase is made up of small, immiscible, and typically dilute particles (referred to as the dispersed or particle phase). Fine aerosol particles in air is an example of ...
Though increasing the ratio of metal-fuel to oxidizer up to the stoichiometric point increases the combustion temperature, the presence of an increasing molar fraction of metal oxides, particularly aluminium oxide (Al 2 O 3) precipitating from the gaseous solution creates globules of solids or liquids that slow down the flow velocity as the ...
Iron oxide nanoparticles may also be used in magnetic hyperthermia as a cancer treatment method. In this method, the ferrofluid which contains iron oxide is injected to the tumor and then heated up by an alternating high frequency magnetic field. The temperature distribution produced by this heat generation may help to destroy cancerous cells ...
Chemical looping combustion (CLC) uses two or more reactions to perform the oxidation of hydrocarbon-based fuels. In its simplest form, an oxygen-carrying species (normally a metal) is first oxidized in the air forming an oxide. This oxide is then reduced using a hydrocarbon as a reducer in a second reaction.
A nanoparticle or ultrafine particle is a particle of matter 1 to 100 nanometres (nm) in diameter. [1] [2] The term is sometimes used for larger particles, up to 500 nm, or fibers and tubes that are less than 100 nm in only two directions. [2]: 394 At the lowest range, metal particles smaller than 1 nm are usually called atom clusters instead.
The liquid metal technology of synthesis of nanostructural aerogel AlOOH from molten Ga-Bi and Al-Al (Institute of RF IPPE named after A. I. Leipunsky, Obninsk city). Growing fiber nano oxide of aluminium on the surface of the aluminum melt (a Method of industrial synthesis, developed and patented by the ANF Technology). [3]
The feedstocks are partially oxidized to generate syngas using metal oxide oxygen carriers as the oxidant. The reduced metal oxide is then oxidized in the regeneration step using air. The syngas is an important intermediate for generation of such diverse products as electricity, chemicals, hydrogen, and liquid fuels.