Search results
Results from the WOW.Com Content Network
Segmentation in biology is the division of some animal and plant body plans into a linear series of repetitive segments that may or may not be interconnected to each other. This article focuses on the segmentation of animal body plans, specifically using the examples of the taxa Arthropoda , Chordata , and Annelida .
A segmentation gene is a gene involved in the early developmental stages of pattern formation. It regulates how cells are organized and defines repeated units in the embryo . Segmentation genes have been documented in three taxa: arthropods (i.e. insects and crabs ), [ 2 ] chordates (i.e. mammals and fish ), and annelids (i.e. leeches and ...
The gooseberry gene's role in segmentation was believed to be involved in segment-polarity class of segmentation genes required for the formation of larval segments because, during embryogenesis, half of the larval segments are replaced by the remain half segment, but in a reversed polarity, which suggested that gooseberry was a single gene. [8]
A key discovery was the existence of groups of homeobox genes, which function as switches responsible for laying down the basic body plan in animals. The homeobox genes are remarkably conserved between species as diverse as the fruit fly and humans, the basic segmented pattern of the worm or fruit fly being the origin of the segmented spine in ...
The nervous system segmentation confers several developmental advantages to the vertebrate body as humans possess a body plan that is bilaterally segmented at the nervous system level. The segmentation is involved at all levels of the human nervous system with increasing level of complexity in the innervation from the brain to limbs. [1]
Earthworms are a classic example of biological homonymous metamery – the property of repeating body segments with distinct regions. In biology, metamerism is the phenomenon of having a linear series of body segments fundamentally similar in structure, though not all such structures are entirely alike in any single life form because some of them perform special functions. [1]
Their research on genetic screening for embryo patterning mutants revealed the role played in early embryologic development by homeobox genes like bicoid. An example of a homeotic mutation is the so-called Antennapedia mutation. In Drosophila, antennae and legs are created by the same basic "program", they only differ in a single transcription ...
Analysis Utility Branch Dose–response curves: Graph that shows the magnitude of the response of an organism, as a function of exposure (or doses) to a stimulus or stressor (usually a chemical) after a certain exposure time [2]