Search results
Results from the WOW.Com Content Network
A graph with edges colored to illustrate a closed walk, H–A–B–A–H, in green; a circuit which is a closed walk in which all edges are distinct, B–D–E–F–D–C–B, in blue; and a cycle which is a closed walk in which all vertices are distinct, H–D–G–H, in red.
An unlabeled coloring of a graph is an orbit of a coloring under the action of the automorphism group of the graph. The colors remain labeled; it is the graph that is unlabeled. There is an analogue of the chromatic polynomial which counts the number of unlabeled colorings of a graph from a given finite color set.
Rainbow coloring of a wheel graph, with three colors.Every two non-adjacent vertices can be connected by a rainbow path, either directly through the center vertex (bottom left) or by detouring around one triangle to avoid a repeated edge color (bottom right).
The 7 cycles of the wheel graph W 4. For odd values of n, W n is a perfect graph with chromatic number 3: the vertices of the cycle can be given two colors, and the center vertex given a third color. For even n, W n has chromatic number 4, and (when n ≥ 6) is not perfect. W 7 is the only wheel graph that is a unit distance graph in the ...
In graph theory, a proper edge coloring of a graph is an assignment of "colors" to the edges of the graph so that no two incident edges have the same color. For example, the figure to the right shows an edge coloring of a graph by the colors red, blue, and green. Edge colorings are one of several different types of graph coloring.
A directed cycle graph of length 8. A directed cycle graph is a directed version of a cycle graph, with all the edges being oriented in the same direction. In a directed graph, a set of edges which contains at least one edge (or arc) from each directed cycle is called a feedback arc set.
Above:A 3:1-coloring of the cycle on 5 vertices, and the corresponding 6:2-coloring. Below: A 5:2 coloring of the same graph. A b-fold coloring of a graph G is an assignment of sets of size b to vertices of a graph such that adjacent vertices receive disjoint sets. An a:b-coloring is a b-fold coloring out of a available colors.
A graph with an odd cycle transversal of size 2: removing the two blue bottom vertices leaves a bipartite graph. Odd cycle transversal is an NP-complete algorithmic problem that asks, given a graph G = (V,E) and a number k, whether there exists a set of k vertices whose removal from G would cause the resulting graph to be bipartite. [31]