Search results
Results from the WOW.Com Content Network
Deterministic vs. probabilistic (stochastic). A deterministic model is one in which every set of variable states is uniquely determined by parameters in the model and by sets of previous states of these variables; therefore, a deterministic model always performs the same way for a given set of initial conditions.
Stochastic social science theory can be seen as an elaboration of a kind of 'third axis' in which to situate human behavior alongside the traditional 'nature vs. nurture' opposition. See Julia Kristeva on her usage of the 'semiotic', Luce Irigaray on reverse Heideggerian epistemology, and Pierre Bourdieu on polythetic space for examples of ...
The systems studied in chaos theory are deterministic. If the initial state were known exactly, then the future state of such a system could theoretically be predicted. However, in practice, knowledge about the future state is limited by the precision with which the initial state can be measured, and chaotic systems are characterized by a strong dependence on the initial condit
Statistical models are often used even when the data-generating process being modeled is deterministic. For instance, coin tossing is, in principle, a deterministic process; yet it is commonly modeled as stochastic (via a Bernoulli process). Choosing an appropriate statistical model to represent a given data-generating process is sometimes ...
A stochastic program is an optimization problem in which some or all problem parameters are uncertain, but follow known probability distributions. [1] [2] This framework contrasts with deterministic optimization, in which all problem parameters are assumed to be known exactly. The goal of stochastic programming is to find a decision which both ...
In contrast to deterministic models, which assume that populations change in predictable ways, stochastic models account for the inherent randomness in births, deaths, and migration. The birth-death process , [ 322 ] a simple stochastic model, describes how populations fluctuate over time due to random births and deaths.
Deterministic vs. stochastic [ edit ] Inventory optimization models can be either deterministic —with every set of variable states uniquely determined by the parameters in the model – or stochastic —with variable states described by probability distributions. [ 12 ]
Similar techniques can change from a discrete, stochastic description to a deterministic, continuum description in a time-and space dependent manner. [21] The use of this technique enables the capturing of noise due to small copy numbers, while being much faster to simulate than the conventional Gillespie algorithm.