Search results
Results from the WOW.Com Content Network
A dangling pointer is a pointer that does not point to a valid object and consequently may make a program crash or behave oddly. In the Pascal or C programming languages, pointers that are not specifically initialized may point to unpredictable addresses in memory. The following example code shows a dangling pointer:
Smart pointers can facilitate intentional programming by expressing, in the type, how the memory of the referent of the pointer will be managed. For example, if a C++ function returns a pointer, there is no way to know whether the caller should delete the memory of the referent when the caller is finished with the information.
Although function pointers in C and C++ can be implemented as simple addresses, so that typically sizeof(Fx)==sizeof(void *), member pointers in C++ are sometimes implemented as "fat pointers", typically two or three times the size of a simple function pointer, in order to deal with virtual methods and virtual inheritance [citation needed].
Specifically, C allows a void* pointer to be assigned to any pointer type without a cast, while C++ does not; this idiom appears often in C code using malloc memory allocation, [9] or in the passing of context pointers to the POSIX pthreads API, and other frameworks involving callbacks. For example, the following is valid in C but not C++:
In the C++ programming language, auto_ptr is an obsolete smart pointer class template that was available in previous versions of the C++ standard library (declared in the <memory> header file), which provides some basic RAII features for C++ raw pointers. It has been replaced by the unique_ptr class.
The d-pointer pattern is one of the implementations of the opaque pointer. It is commonly used in C++ classes due to its advantages (noted below). A d-pointer is a private data member of the class that points to an instance of a structure. This method allows class declarations to omit private data members, except for the d-pointer itself. [6]
Objects that are shared but not owned can be accessed via a reference, raw pointer, or iterator (a conceptual generalisation of pointers). However, by the same token, C++ provides native ways for users to opt-into such functionality: C++11 provides reference counted smart pointers, via the std::shared_ptr class, enabling automatic shared memory ...
When an object is created, a pointer to this table, called the virtual table pointer, vpointer or VPTR, is added as a hidden member of this object. As such, the compiler must also generate "hidden" code in the constructors of each class to initialize a new object's virtual table pointer to the address of its class's virtual method table.