enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. G-quadruplex - Wikipedia

    en.wikipedia.org/wiki/G-quadruplex

    G-quadruplex structures can be computationally predicted from DNA or RNA sequence motifs, [11] [12] but their actual structures can be quite varied within and between the motifs, which can number over 100,000 per genome. Their activities in basic genetic processes are an active area of research in telomere, gene regulation, and functional ...

  3. DHX36 - Wikipedia

    en.wikipedia.org/wiki/DHX36

    Structurally, DHX36 is a 1008 amino acid-long modular protein that has been crystallized in a complex with a DNA G-quadruplex. [6] It consists of a ~440-amino acid helicase core comprising all signature motifs of the DEAH/RHA family of helicases with N- and C-terminal flanking regions of ~180 and ~380 amino acids, respectively.

  4. Quantum chemistry composite methods - Wikipedia

    en.wikipedia.org/wiki/Quantum_chemistry...

    According to the developers, this theory gives significant improvement over G3-theory. The G4 and the related G4MP2 methods have been extended to cover transition metals. [5] A variant of G4MP2, termed G4(MP2)-6X, has been developed with an aim to improve the accuracy with essentially identical quantum chemistry components. [6]

  5. List of RNA structure prediction software - Wikipedia

    en.wikipedia.org/wiki/List_of_RNA_structure...

    Name Description Knots [Note 1]Links References trRosettaRNA: trRosettaRNA is an algorithm for automated prediction of RNA 3D structure. It builds the RNA structure by Rosetta energy minimization, with deep learning restraints from a transformer network (RNAformer). trRosettaRNA has been validated in blind tests, including CASP15 and RNA-Puzzles, which suggests that the automated predictions ...

  6. GOR method - Wikipedia

    en.wikipedia.org/wiki/GOR_method

    The GOR method analyzes sequences to predict alpha helix, beta sheet, turn, or random coil secondary structure at each position based on 17-amino-acid sequence windows. The original description of the method included four scoring matrices of size 17×20, where the columns correspond to the log-odds score, which reflects the probability of finding a given amino acid at each position in the 17 ...

  7. Structural bioinformatics - Wikipedia

    en.wikipedia.org/wiki/Structural_bioinformatics

    Three-dimensional structure of a protein. Structural bioinformatics is the branch of bioinformatics that is related to the analysis and prediction of the three-dimensional structure of biological macromolecules such as proteins, RNA, and DNA. It deals with generalizations about macromolecular 3D structures such as comparisons of overall folds ...

  8. Structural genomics - Wikipedia

    en.wikipedia.org/wiki/Structural_genomics

    With full-genome sequences available, structure prediction can be done more quickly through a combination of experimental and modeling approaches, especially because the availability of large number of sequenced genomes and previously solved protein structures allows scientists to model protein structure on the structures of previously solved ...

  9. Protein structure prediction - Wikipedia

    en.wikipedia.org/wiki/Protein_structure_prediction

    The protein structure prediction remains an extremely difficult and unresolved undertaking. The two main problems are the calculation of protein free energy and finding the global minimum of this energy. A protein structure prediction method must explore the space of possible protein structures which is astronomically large.