Search results
Results from the WOW.Com Content Network
Leonardo of Pisa (c. 1170 – c. 1250) described this method [1] [2] for generating primitive triples using the sequence of consecutive odd integers ,,,,, … and the fact that the sum of the first n terms of this sequence is .
The prime quadruplets are pairs of twin primes with only one odd number between them. The sum of the reciprocals of the numbers in prime quadruplets is approximately 0.8706. The sum of the reciprocals of the perfect powers (including duplicates) is 1. The sum of the reciprocals of the perfect powers (excluding duplicates) is approximately 0. ...
(the Fibonacci sequence) is formed by starting with 0 and 1 and then adding any two consecutive terms to obtain the next one: an implicit description (sequence A000045 in the OEIS). The sequence 0, 3, 8, 15, ... is formed according to the formula n 2 − 1 for the n th term: an explicit definition.
In mathematics, an interprime is the average of two consecutive odd primes. [1] For example, 9 is an interprime because it is the average of 7 and 11. The first interprimes are:
When a triple of numbers a, b and c forms a primitive Pythagorean triple, then (c minus the even leg) and one-half of (c minus the odd leg) are both perfect squares; however this is not a sufficient condition, as the numbers {1, 8, 9} pass the perfect squares test but are not a Pythagorean triple since 1 2 + 8 2 ≠ 9 2.
The number is taken to be 'odd' or 'even' according to whether its numerator is odd or even. Then the formula for the map is exactly the same as when the domain is the integers: an 'even' such rational is divided by 2; an 'odd' such rational is multiplied by 3 and then 1 is added.
In number theory, a polite number is a positive integer that can be written as the sum of two or more consecutive positive integers. A positive integer which is not polite is called impolite . [ 1 ] [ 2 ] The impolite numbers are exactly the powers of two , and the polite numbers are the natural numbers that are not powers of two.
Even and odd numbers have opposite parities, e.g., 22 (even number) and 13 (odd number) have opposite parities. In particular, the parity of zero is even. [2] Any two consecutive integers have opposite parity. A number (i.e., integer) expressed in the decimal numeral system is even or odd according to whether its last digit is even or odd. That ...