Search results
Results from the WOW.Com Content Network
Absorption half-life 1 h, elimination half-life 12 h. Biological half-life (elimination half-life, pharmacological half-life) is the time taken for concentration of a biological substance (such as a medication) to decrease from its maximum concentration (C max) to half of C max in the blood plasma.
Alternatively, since the radioactive decay contributes to the "physical (i.e. radioactive)" half-life, while the metabolic elimination processes determines the "biological" half-life of the radionuclide, the two act as parallel paths for elimination of the radioactivity, the effective half-life could also be represented by the formula: [1] [2]
The plasma half-life or half life of elimination is the time required to eliminate 50% of the absorbed dose of a drug from an organism. Or put another way, the time that it takes for the plasma concentration to fall by half from its maximum levels.
The elimination rate constant K or K e is a value used in pharmacokinetics to describe the rate at which a drug is removed from the human system. [1] It is often abbreviated K or K e. It is equivalent to the fraction of a substance that is removed per unit time measured at any particular instant and has units of T −1.
Context-sensitive half-life or context sensitive half-time is defined as the time taken for blood plasma concentration of a drug to decline by one half after an infusion designed to maintain a steady state (i.e. a constant plasma concentration) has been stopped. The "context" is the duration of infusion.
But is also equivalent to divided by elimination rate half-life /, = /. Thus, = /. This means, for example, that an increase in total clearance results in a decrease in elimination rate half-life, provided distribution volume is constant.
Intravenous dexmedetomidine exhibits linear pharmacokinetics with a rapid distribution half-life of approximately 6 minutes in healthy volunteers, and a longer and more variable distribution half-life in ICU patients. [49] The terminal elimination half-life of intravenous dexmedetomidine ranged 2.1 to 3.1 hours in healthy adults and 2.2 to 3.7 ...
Although lemborexant has a longer terminal elimination half-life than suvorexant, it appears to be more rapidly cleared than suvorexant in the earlier phases of elimination. [21] [7] In addition, lemborexant dissociates from the orexin receptors more rapidly than does suvorexant. [21]