Search results
Results from the WOW.Com Content Network
In computer science, a tree is a widely used abstract data type that represents a hierarchical tree structure with a set of connected nodes. Each node in the tree can be connected to many children (depending on the type of tree), but must be connected to exactly one parent, [ 1 ] [ 2 ] except for the root node, which has no parent (i.e., the ...
Trie data structures are commonly used in predictive text or autocomplete dictionaries, and approximate matching algorithms. [11] Tries enable faster searches, occupy less space, especially when the set contains large number of short strings, thus used in spell checking , hyphenation applications and longest prefix match algorithms.
An example of a radix tree. In computer science, a radix tree (also radix trie or compact prefix tree or compressed trie) is a data structure that represents a space-optimized trie (prefix tree) in which each node that is the only child is merged with its parent.
A succinct data structure is one which occupies close to minimum possible space, as established by information theoretical lower bounds. The number of different binary trees on nodes is , the th Catalan number (assuming we view trees with identical structure as identical
A point-region quadtree with point data. Bucket capacity 1. Quadtree compression of an image step by step. Left shows the compressed image with the tree bounding boxes while the right shows just the compressed image. A quadtree is a tree data structure in which each internal node has exactly four
When merging is a common task, a different heap implementation is recommended, such as binomial heaps, which can be merged in O(log n). Additionally, a binary heap can be implemented with a traditional binary tree data structure, but there is an issue with finding the adjacent element on the last level on the binary heap when adding an element.
To turn a regular search tree into an order statistic tree, the nodes of the tree need to store one additional value, which is the size of the subtree rooted at that node (i.e., the number of nodes below it). All operations that modify the tree must adjust this information to preserve the invariant that size[x] = size[left[x]] + size[right[x]] + 1
This makes the min-max heap a very useful data structure to implement a double-ended priority queue. Like binary min-heaps and max-heaps, min-max heaps support logarithmic insertion and deletion and can be built in linear time. [3] Min-max heaps are often represented implicitly in an array; [4] hence it's referred to as an implicit data structure.