Search results
Results from the WOW.Com Content Network
Normal cognitive aging may affect long term and working memory, though the cholinergic system and cortical areas maintain performance through functional compensation. Adults with AD presenting with dysfunction of the cholinergic system are not able to compensate for long-term and working memory deficits. [7]
Acetylcholine (ACh) is an organic compound that functions in the brain and body of many types of animals (including humans) as a neurotransmitter. [1] Its name is derived from its chemical structure: it is an ester of acetic acid and choline. [2] Parts in the body that use or are affected by acetylcholine are referred to as cholinergic.
A cholinergic neuron is a nerve cell which mainly uses the neurotransmitter acetylcholine (ACh) to send its messages. Many neurological systems are cholinergic.Cholinergic neurons provide the primary source of acetylcholine to the cerebral cortex, and promote cortical activation during both wakefulness and rapid eye movement sleep. [1]
The muscarinic acetylcholine receptor M 2, also known as the cholinergic receptor, muscarinic 2, is a muscarinic acetylcholine receptor that in humans is encoded by the CHRM2 gene. [5] Multiple alternatively spliced transcript variants have been described for this gene. [5] It is G i-coupled, reducing intracellular levels of cAMP.
The muscarine cholinergic receptor activates a G-protein when bound to extracellular ACh. The alpha subunit of the G-protein activates guanylate cyclase (inhibiting the effects of intracellular cAMP) while the beta-gamma subunit activates the K-channels and therefore hyperpolarize the cell. This causes a decrease in cardiac activity.
The loss of cholinergic innervation in the neocortex has been associated with memory loss, as is evidenced in advanced cases of Alzheimer's disease. In the peripheral nervous system, cholinergic neurons are implicated in the control of visceral functions such as, but not limited to, cardiac muscle contraction and gastrointestinal tract function.
Peripheral autonomic fibers (sympathetic and parasympathetic fibers) are categorized anatomically as either preganglionic or postganglionic fibers, then further generalized as either adrenergic fibers, releasing noradrenaline, or cholinergic fibers, both releasing acetylcholine and expressing acetylcholine receptors. Both preganglionic ...
The cholinergic anti-inflammatory pathway provides a braking effect on the innate immune response which protects the body against the damage that can occur if a localized inflammatory response spreads beyond the local tissues, which results in toxicity or damage to the kidney, liver, lungs, and other organs.