Search results
Results from the WOW.Com Content Network
From this measurement and the apparent magnitudes of both stars, the luminosities can be found, and by using the mass–luminosity relationship, the masses of each star. These masses are used to re-calculate the separation distance, and the process is repeated. The process is iterated many times, and accuracies as high as 5% can be achieved. [8]
The Schwarzschild radius or the gravitational radius is a physical parameter in the Schwarzschild solution to Einstein's field equations that corresponds to the radius defining the event horizon of a Schwarzschild black hole. It is a characteristic radius associated with any quantity of mass.
Radius of gyration (in polymer science)(, unit: nm or SI unit: m): For a macromolecule composed of mass elements, of masses , =1,2,…,, located at fixed distances from the centre of mass, the radius of gyration is the square-root of the mass average of over all mass elements, i.e.,
Thus, the gyroradius is directly proportional to the particle mass and perpendicular velocity, while it is inversely proportional to the particle electric charge and the magnetic field strength. The time it takes the particle to complete one revolution, called the period , can be calculated to be T g = 2 π r g v ⊥ . {\displaystyle T_{g ...
Two bodies orbiting a common center of mass, indicated by the red plus. The larger body has a higher mass, and therefore a smaller orbit and a lower orbital velocity than its lower-mass companion. The binary mass function follows from Kepler's third law when the radial velocity of one binary component is known. [1]
For such two- or restricted three-body problems as its simplest examples—e.g., one more massive primary astrophysical body, mass of m1, and a less massive secondary body, mass of m2—the concept of a Hill radius or sphere is of the approximate limit to the secondary mass's "gravitational dominance", [6] a limit defined by "the extent" of its ...
These proportionalities may be expressed by the formula: where g is the surface gravity of an object, expressed as a multiple of the Earth's, m is its mass, expressed as a multiple of the Earth's mass (5.976 × 10 24 kg) and r its radius, expressed as a multiple of the Earth's (mean) radius (6,371 km). [9]
In physics, reduced mass is a measure of the effective inertial mass of a system with two or more particles when the particles are interacting with each other. Reduced mass allows the two-body problem to be solved as if it were a one-body problem .