Search results
Results from the WOW.Com Content Network
In mathematics, the arguments of the maxima (abbreviated arg max or argmax) and arguments of the minima (abbreviated arg min or argmin) are the input points at which a function output value is maximized and minimized, respectively. [8] While the arguments are defined over the domain of a function, the output is part of its codomain.
In mathematics, the arguments of the maxima (abbreviated arg max or argmax) and arguments of the minima (abbreviated arg min or argmin) are the input points at which a function output value is maximized and minimized, respectively. [note 1] While the arguments are defined over the domain of a function, the output is part of its codomain.
Significant wave height H 1/3, or H s or H sig, as determined in the time domain, directly from the time series of the surface elevation, is defined as the average height of that one-third of the N measured waves having the greatest heights: [5] / = = where H m represents the individual wave heights, sorted into descending order of height as m increases from 1 to N.
Hasse diagram of the set P of divisors of 60, partially ordered by the relation "x divides y".The red subset = {1,2,3,4} has two maximal elements, viz. 3 and 4, and one minimal element, viz. 1, which is also its least element.
In mathematical optimization, the method of Lagrange multipliers is a strategy for finding the local maxima and minima of a function subject to equation constraints (i.e., subject to the condition that one or more equations have to be satisfied exactly by the chosen values of the variables). [1]
V̇O 2 max (also maximal oxygen consumption, maximal oxygen uptake or maximal aerobic capacity) is the maximum rate of oxygen consumption attainable during physical exertion. [1] [2] The name is derived from three abbreviations: "V̇" for volume (the dot over the V indicates "per unit of time" in Newton's notation), "O 2" for oxygen, and "max" for maximum and usually normalized per kilogram of ...
In mathematics, Chebyshev distance (or Tchebychev distance), maximum metric, or L ∞ metric [1] is a metric defined on a real coordinate space where the distance between two points is the greatest of their differences along any coordinate dimension. [2]
It is always true that the left-hand side is at most the right-hand side (max–min inequality) but equality only holds under certain conditions identified by minimax theorems. The first theorem in this sense is von Neumann 's minimax theorem about two-player zero-sum games published in 1928, [ 2 ] which is considered the starting point of game ...