Search results
Results from the WOW.Com Content Network
C struct data types may end with a flexible array member [1] with no specified size: struct vectord { short len ; // there must be at least one other data member double arr []; // the flexible array member must be last // The compiler may reserve extra padding space here, like it can between struct members };
In addition to support for vectorized arithmetic and relational operations, these languages also vectorize common mathematical functions such as sine. For example, if x is an array, then y = sin (x) will result in an array y whose elements are sine of the corresponding elements of the array x. Vectorized index operations are also supported.
For every type T, except void and function types, there exist the types "array of N elements of type T". An array is a collection of values, all of the same type, stored contiguously in memory. An array of size N is indexed by integers from 0 up to and including N−1. Here is a brief example:
Some array data structures do not reallocate storage, but do store a count of the number of elements of the array in use, called the count or size. This effectively makes the array a dynamic array with a fixed maximum size or capacity; Pascal strings are examples of this.
Object Pascal dynamic arrays are allocated on the heap. [12] In this language, it is called a dynamic array. The declaration of such a variable is similar to the declaration of a static array, but without specifying its size. The size of the array is given at the time of its use.
In C and C++ arrays do not support the size function, so programmers often have to declare separate variable to hold the size, and pass it to procedures as a separate parameter. Elements of a newly created array may have undefined values (as in C), or may be defined to have a specific "default" value such as 0 or a null pointer (as in Java).
In computer science, an associative array, map, symbol table, or dictionary is an abstract data type that stores a collection of (key, value) pairs, such that each possible key appears at most once in the collection. In mathematical terms, an associative array is a function with finite domain. [1] It supports 'lookup', 'remove', and 'insert ...
One seemingly simple way to do this is to create a new array of equal size, fill it with copies from a in the appropriate order and then delete a. function reverse(a[0..n - 1]) allocate b[0..n - 1] for i from 0 to n - 1 b[n − 1 − i] := a[i] return b