Search results
Results from the WOW.Com Content Network
The closely related code point U+2262 ≢ NOT IDENTICAL TO (≢, ≢) is the same symbol with a slash through it, indicating the negation of its mathematical meaning. [ 1 ] In LaTeX mathematical formulas, the code \equiv produces the triple bar symbol and \not\equiv produces the negated triple bar symbol ≢ {\displaystyle \not ...
In this case, the term following 21 would be 1112 ("one 1, one 2") and the term following 3112 would be 211213 ("two 1s, one 2 and one 3"). These sequences differ in several notable ways from the look-and-say sequence. Notably, unlike the Conway sequences, a given term of the pea pattern does not uniquely define the preceding term.
Many properties of a natural number n can be seen or directly computed from the prime factorization of n.. The multiplicity of a prime factor p of n is the largest exponent m for which p m divides n.
In mathematics, the Fibonacci sequence is a sequence in which each number is the sum of the two preceding ones. Numbers that are part of the Fibonacci sequence are known as Fibonacci numbers, commonly denoted Fn . Many writers begin the sequence with 0 and 1, although some authors start it from 1 and 1 [1][2] and some (as did Fibonacci) from 1 ...
0, 1, 3, 6, 2, 7, 13, 20, 12, 21, 11, 22, 10, 23, 9, 24, 8, 25, 43, 62, ... "subtract if possible, otherwise add" : a (0) = 0; for n > 0, a ( n ) = a ( n − 1) − n if that number is positive and not already in the sequence, otherwise a ( n ) = a ( n − 1) + n , whether or not that number is already in the sequence.
Bijective numeration is any numeral system in which every non-negative integer can be represented in exactly one way using a finite string of digits.The name refers to the bijection (i.e. one-to-one correspondence) that exists in this case between the set of non-negative integers and the set of finite strings using a finite set of symbols (the "digits").
Benacerraf's identification problem. In the philosophy of mathematics, Benacerraf's identification problem is a philosophical argument developed by Paul Benacerraf against set-theoretic Platonism and published in 1965 in an article entitled "What Numbers Could Not Be". [1][2] Historically, the work became a significant catalyst in motivating ...
Unicode equivalence. Unicode equivalence is the specification by the Unicode character encoding standard that some sequences of code points represent essentially the same character. This feature was introduced in the standard to allow compatibility with pre-existing standard character sets, which often included similar or identical characters ...