Search results
Results from the WOW.Com Content Network
The same team demonstrated in 2017 the first creation of a Bose–Einstein condensate in space [73] and it is also the subject of two upcoming experiments on the International Space Station. [74] [75] Researchers in the new field of atomtronics use the properties of Bose–Einstein condensates in the emerging quantum technology of matter-wave ...
Bose and Einstein extended the idea to atoms and this led to the prediction of the existence of phenomena which became known as Bose–Einstein condensate, a dense collection of bosons (which are particles with integer spin, named after Bose), which was demonstrated to exist by experiment in 1995.
The first Bose–Einstein condensate observed in a gas of ultracold rubidium atoms. The blue and white areas represent higher density. Ultracold atom trapping in optical lattices is an experimental tool commonly used in condensed matter physics, and in atomic, molecular, and optical physics.
Download as PDF; Printable version ... composite bosons which can be observed to form Bose–Einstein condensates, [7] [8 ... for emerging technological applications. ...
Bose–Einstein condensation of polaritons is a growing field in semiconductor optics research, which exhibits spontaneous coherence similar to a laser, but through a different mechanism. A continuous transition from polariton condensation to lasing can be made similar to that of the crossover from a Bose–Einstein condensate to a BCS state in ...
Bose–Einstein condensation can occur in quasiparticles, particles that are effective descriptions of collective excitations in materials. Some have integer spins and can be expected to obey Bose–Einstein statistics like traditional particles. Conditions for condensation of various quasiparticles have been predicted and observed.
A Bose-Einstein condensate is a state of matter that emerges when a group of atoms is cooled to extremely low temperatures, approaching absolute zero. Within this state, all the atoms composing the condensate converge into a single quantum state with macroscopic quantum coherence and behave as a unified, wave-like entity.
As a result, at very low energies (or temperatures), a great majority of the bosons in a Bose gas can be crowded into the lowest energy state, creating a Bose–Einstein condensate. Bose and Einstein have established that the statistical properties of a Bose gas are governed by the Bose–Einstein statistics. In Bose–Einstein statistics, any ...