Search results
Results from the WOW.Com Content Network
Figure 1B: Low-pass filter (1st-order, one-pole) Bode magnitude plot (top) and Bode phase plot (bottom). The red data curve is approximated by the straight black line. In electrical engineering and control theory, a Bode plot is a graph of the frequency response of a system.
Technically, a point z 0 is a pole of a function f if it is a zero of the function 1/f and 1/f is holomorphic (i.e. complex differentiable) in some neighbourhood of z 0. A function f is meromorphic in an open set U if for every point z of U there is a neighborhood of z in which at least one of f and 1/ f is holomorphic.
The cutoff frequency of the TM 01 mode (next higher from dominant mode TE 11) in a waveguide of circular cross-section (the transverse-magnetic mode with no angular dependence and lowest radial dependence) is given by = =, where is the radius of the waveguide, and is the first root of (), the Bessel function of the first kind of order 1.
The procedure outlined in the Bode plot article is followed. Figure 5 is the Bode gain plot for the two-pole amplifier in the range of frequencies up to the second pole position. The assumption behind Figure 5 is that the frequency f 0 dB lies between the lowest pole at f 1 = 1/(2πτ 1) and the second pole at f 2 = 1/(2πτ 2). As indicated in ...
Magnitude response of a low pass filter with 6 dB per octave or 20 dB per decade roll-off. Measuring the frequency response typically involves exciting the system with an input signal and measuring the resulting output signal, calculating the frequency spectra of the two signals (for example, using the fast Fourier transform for discrete signals), and comparing the spectra to isolate the ...
A pole-zero plot shows the location in the complex plane of the poles and zeros of the transfer function of a dynamic system, such as a controller, compensator, sensor, equalizer, filter, or communications channel. By convention, the poles of the system are indicated in the plot by an X while the zeros are indicated by a circle or O.
The imaginary part of a response function describes how a system dissipates energy, since it is in phase with the driving force. [ citation needed ] The Kramers–Kronig relations imply that observing the dissipative response of a system is sufficient to determine its out of phase (reactive) response, and vice versa.
This page was last edited on 19 July 2005, at 14:41 (UTC).; Text is available under the Creative Commons Attribution-ShareAlike 4.0 License; additional terms may ...