Search results
Results from the WOW.Com Content Network
Adaptation is related to biological fitness, which governs the rate of evolution as measured by changes in allele frequencies. Often, two or more species co-adapt and co-evolve as they develop adaptations that interlock with those of the other species, such as with flowering plants and pollinating insects .
These adaptations serve a specific function during a particular period of development, after which they are discarded. Ontogenetic adaptations can be physiological (for example, when fetal mammals deriving nutrition and oxygen from the placenta before birth, but no longer utilize the placenta after birth) and psychological. [1]
Any component of the environment can drive local adaptation, as long as it affects fitness differently at different sites (creating divergent selection among sites), and does so consistently enough for populations to evolve in response. Seminal examples of local adaptation come from plants that adapted to different elevations [10] or to ...
Cuckoos are a canonical example; the female cuckoo has its offspring raised by a bird of a different species, cutting down the biological mother's parental investment. The ability to lay eggs that mimic the host eggs is the key adaptation. The adaptation to different hosts is inherited through the female line in so-called gentes (gens, singular).
Also called functionalism. The Darwinian view that many or most physiological and behavioral traits of organisms are adaptations that have evolved for specific functions or for specific reasons (as opposed to being byproducts of the evolution of other traits, consequences of biological constraints, or the result of random variation). adaptive radiation The simultaneous or near-simultaneous ...
Convergent evolution—the repeated evolution of similar traits in multiple lineages which all ancestrally lack the trait—is rife in nature, as illustrated by the examples below. The ultimate cause of convergence is usually a similar evolutionary biome , as similar environments will select for similar traits in any species occupying the same ...
The theory of evolution explains these homologous structures: all four animals shared a common ancestor, and each has undergone change over many generations. These changes in structure have produced forelimbs adapted for different tasks. [49] The bird and the bat wing are examples of convergent evolution.
It differs from divergent evolution as the species involved do not descend from a closely related common ancestor and the traits accumulated are similar. [4] An example of convergent evolution is the development of flight in birds, bats, and insects, all of which are not closely related but share analogous structures allowing for flight. [8]