Search results
Results from the WOW.Com Content Network
Linear programming (LP), also called linear optimization, is a method to achieve the best outcome (such as maximum profit or lowest cost) in a mathematical model whose requirements and objective are represented by linear relationships.
The above formulation's quantity constraints are minimum constraints (at least the given amount of each order must be produced, but possibly more). When c i = 1 {\displaystyle c_{i}=1} , the objective minimises the number of utilised master items and, if the constraint for the quantity to be produced is replaced by equality, it is called the ...
The configuration linear program (configuration-LP) is a linear programming technique used for solving combinatorial optimization problems. It was introduced in the context of the cutting stock problem. [1] [2] Later, it has been applied to the bin packing [3] [4] and job scheduling problems.
Tables, plots, comments, and the MathLook notation display tool can be used to enrich TK Solver models. Models can be linked to other components with Microsoft Visual Basic and .NET tools, or they can be web-enabled using the RuleMaster product or linked with Excel spreadsheets using the Excel Toolkit product. There is also a DesignLink option ...
Covering problems are minimization problems and usually integer linear programs, whose dual problems are called packing problems. The most prominent examples of covering problems are the set cover problem , which is equivalent to the hitting set problem , and its special cases, the vertex cover problem and the edge cover problem .
Similarly, an integer program (consisting of a collection of linear constraints and a linear objective function, as in a linear program, but with the additional restriction that the variables must take on only integer values) satisfies both the monotonicity and locality properties of an LP-type problem, with the same general position ...
This is an integer linear program. However, we can solve it without the integrality constraints (i.e., drop the last constraint), using standard methods for solving continuous linear programs. While this formulation allows also fractional variable values, in this special case, the LP always has an optimal solution where the variables take ...
Column generation or delayed column generation is an efficient algorithm for solving large linear programs. The overarching idea is that many linear programs are too large to consider all the variables explicitly. The idea is thus to start by solving the considered program with only a subset of its variables.