Search results
Results from the WOW.Com Content Network
In elementary algebra, the binomial theorem (or binomial expansion) describes the algebraic expansion of powers of a binomial.According to the theorem, the power (+) expands into a polynomial with terms of the form , where the exponents and are nonnegative integers satisfying + = and the coefficient of each term is a specific positive integer ...
On the other hand, if such a tiling uses exactly k of the 2 × 1 tiles, then it uses n − 2k of the 1 × 1 tiles, and so uses n − k tiles total. There are ( n − k k ) {\displaystyle {\tbinom {n-k}{k}}} ways to order these tiles, and so summing this coefficient over all possible values of k gives the identity.
In a 1940 article on modular fields, Saunders Mac Lane quotes Stephen Kleene's remark that a knowledge of (a + b) 2 = a 2 + b 2 in a field of characteristic 2 would corrupt freshman students of algebra. This may be the first connection between "freshman" and binomial expansion in fields of positive characteristic. [6]
Lucas's theorem can be generalized to give an expression for the remainder when () is divided by a prime power p k.However, the formulas become more complicated. If the modulo is the square of a prime p, the following congruence relation holds for all 0 ≤ s ≤ r ≤ p − 1, a ≥ 0, and b ≥ 0.
The case α = 1 gives the series 1 + x + x 2 + x 3 + ..., where the coefficient of each term of the series is simply 1. The case α = 2 gives the series 1 + 2x + 3x 2 + 4x 3 + ..., which has the counting numbers as coefficients. The case α = 3 gives the series 1 + 3x + 6x 2 + 10x 3 + ..., which has the triangle numbers as coefficients.
The binomial approximation for the square root, + + /, can be applied for the following expression, + where and are real but .. The mathematical form for the binomial approximation can be recovered by factoring out the large term and recalling that a square root is the same as a power of one half.
MINEOLA, N.Y. — A Republican official who oversees Nassau County on New York's Long Island has seemingly refused to lower flags to half-staff in memory of the late Democratic President Jimmy ...
This page was last edited on 31 May 2004, at 15:23 (UTC).; Text is available under the Creative Commons Attribution-ShareAlike 4.0 License; additional terms may apply ...