Search results
Results from the WOW.Com Content Network
Data-driven models encompass a wide range of techniques and methodologies that aim to intelligently process and analyse large datasets. Examples include fuzzy logic, fuzzy and rough sets for handling uncertainty, [3] neural networks for approximating functions, [4] global optimization and evolutionary computing, [5] statistical learning theory, [6] and Bayesian methods. [7]
In finance, technical analysis is an analysis methodology for analysing and forecasting the direction of prices through the study of past market data, primarily price and volume. [1] As a type of active management , it stands in contradiction to much of modern portfolio theory .
A data product is a computer application that takes data inputs and generates outputs, feeding them back into the environment. [41] It may be based on a model or algorithm. For instance, an application that analyzes data about customer purchase history, and uses the results to recommend other purchases the customer might enjoy. [42] [13]
The discovery of a Guttman scale in data depends on their multivariate distribution's conforming to a particular structure (see below). Hence, a Guttman scale is a hypothesis about the structure of the data, formulated with respect to a specified attribute and a specified population and cannot be constructed for any given set of observations ...
Then, analyze the source data to determine the most appropriate data and model building approach (models are only as useful as the applicable data used to build them). Select and transform the data in order to create models. Create and test models in order to evaluate if they are valid and will be able to meet project goals and metrics.
A review and critique of data mining process models in 2009 called the CRISP-DM the "de facto standard for developing data mining and knowledge discovery projects." [ 16 ] Other reviews of CRISP-DM and data mining process models include Kurgan and Musilek's 2006 review, [ 8 ] and Azevedo and Santos' 2008 comparison of CRISP-DM and SEMMA. [ 9 ]
Data envelopment analysis (DEA) is a nonparametric method in operations research and economics for the estimation of production frontiers. [1] DEA has been applied in a large range of fields including international banking, economic sustainability, police department operations, and logistical applications [2] [3] [4] Additionally, DEA has been used to assess the performance of natural language ...
A canonical example of a data-flow analysis is reaching definitions. A simple way to perform data-flow analysis of programs is to set up data-flow equations for each node of the control-flow graph and solve them by repeatedly calculating the output from the input locally at each node until the whole system stabilizes, i.e., it reaches a fixpoint.