Search results
Results from the WOW.Com Content Network
The melting point (or, rarely, liquefaction point) of a substance is the temperature at which it changes state from solid to liquid. At the melting point the solid and liquid phase exist in equilibrium. The melting point of a substance depends on pressure and is usually specified at a standard pressure such as 1 atmosphere or 100 kPa.
However, at very high pressures higher melting temperatures are generally observed as the liquid usually occupies a larger volume than the solid making melting more thermodynamically unfavorable at elevated pressure. If the liquid has a smaller volume than the solid (as for ice and liquid water) a higher pressure leads to a lower melting point.
Boiling-point elevation is the phenomenon whereby the boiling point of a liquid (a solvent) will be higher when another compound is added, meaning that a solution has a higher boiling point than a pure solvent. This happens whenever a non-volatile solute, such as a salt, is added to a pure solvent, such as water.
Liquidus temperature curve in the binary glass system SiO 2-Li 2 O. For impure substances, e.g. alloys, honey, soft drink, ice cream, etc. the melting point broadens into a melting interval. If the temperature is within the melting interval, one may see "slurries" at equilibrium, i.e. the slurry will neither fully solidify nor melt.
Plastics and low-melting-temperature metals, including many solders, can begin to creep at room temperature. Glacier flow is an example of creep processes in ice. [3] The effects of creep deformation generally become noticeable at approximately 35% of the melting point (in Kelvin) for metals and at 45% of melting point for ceramics. [4]
In thermodynamics, superheating (sometimes referred to as boiling retardation, or boiling delay) is the phenomenon in which a liquid is heated to a temperature higher than its boiling point, without boiling. This is a so-called metastable state or metastate, where boiling might occur at any time, induced by external or internal effects.
Heat of vaporization of water from melting to critical temperature. Water has a very high specific heat capacity of 4184 J/(kg·K) at 20 °C (4182 J/(kg·K) at 25 °C) —the second-highest among all the heteroatomic species (after ammonia), as well as a high heat of vaporization (40.65 kJ/mol or 2268 kJ/kg at the normal boiling point), both of ...
The rising temperature contributes to a rise in sea levels due to the expansion of water as it warms and the melting of ice sheets on land. Other effects on oceans include sea ice decline, reducing pH values and oxygen levels, as well as increased ocean stratification.