Search results
Results from the WOW.Com Content Network
Isopropyl β-d-1-thiogalactopyranoside (IPTG) is a molecular biology reagent. This compound is a molecular mimic of allolactose , a lactose metabolite that triggers transcription of the lac operon , and it is therefore used to induce protein expression where the gene is under the control of the lac operator .
IPTG is a reagent which mimics the structure of allolactose, and can therefore bind to the lac repressor and prevent it from inhibiting gene expression. Once enough IPTG is added, the T7 gene is normally transcribed and so transcription of the gene of interest downstream of the T7 promoter also begins. [6]
Neural stem cells (NSCs) in the brain must find a balance between maintaining their multipotency by self renewing and proliferating as opposed to differentiating and becoming quiescent. The PI3K/AKT pathway is crucial in this decision making process. NSCs are able to sense and respond to changes in the brain or throughout the organism.
Inducible systems - An inducible system is off unless there is the presence of some molecule (called an inducer) that allows for gene expression. The molecule is said to "induce expression". The manner by which this happens is dependent on the control mechanisms as well as differences between prokaryotic and eukaryotic cells.
When referring to a promoter some authors actually mean promoter + operator; i.e., the lac promoter is IPTG inducible, meaning that besides the lac promoter, the lac operon is also present. If the lac operator were not present the IPTG would not have an inducible effect. [citation needed] Another example is the Tac-Promoter system (Ptac ...
Nerve growth factor (NGF), the prototypical growth factor, is a protein secreted by a neuron's target cell. NGF is critical for the survival and maintenance of sympathetic and sensory neurons. NGF is released from the target cells, binds to and activates its high affinity receptor TrkA on the neuron, and is internalized into the responsive neuron.
2. Excessive Stress. Stress is a natural, normal part of the human experience, and your body knows how to handle it. When you’re under stress, your body releases stress hormones that activate ...
The induction of NMDA receptor-dependent long-term potentiation (LTP) in chemical synapses in the brain occurs via a fairly straightforward mechanism. [1] [2] A substantial and rapid rise in calcium ion concentration inside the postsynaptic cell (or more specifically, within the dendritic spine) is most possibly all that is required to induce LTP.