enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Bragg's law - Wikipedia

    en.wikipedia.org/wiki/Bragg's_law

    where m is the Bragg order (a positive integer), λ B the diffracted wavelength, Λ the fringe spacing of the grating, θ the angle between the incident beam and the normal (N) of the entrance surface and φ the angle between the normal and the grating vector (K G). Radiation that does not match Bragg's law will pass through the VBG undiffracted.

  3. Miller index - Wikipedia

    en.wikipedia.org/wiki/Miller_index

    Examples of determining indices for a plane using intercepts with axes; left (111), right (221) There are two equivalent ways to define the meaning of the Miller indices: [1] via a point in the reciprocal lattice, or as the inverse intercepts along the lattice vectors.

  4. X-ray spectroscopy - Wikipedia

    en.wikipedia.org/wiki/X-ray_spectroscopy

    WDS is widely used in microprobes (where X-ray microanalysis is the main task) and in XRF; it is widely used in the field of X-ray diffraction to calculate various data such as interplanar spacing and wavelength of the incident X-ray using Bragg's law.

  5. Reciprocal lattice - Wikipedia

    en.wikipedia.org/wiki/Reciprocal_lattice

    Reciprocal space (also called k-space) provides a way to visualize the results of the Fourier transform of a spatial function. It is similar in role to the frequency domain arising from the Fourier transform of a time dependent function; reciprocal space is a space over which the Fourier transform of a spatial function is represented at spatial frequencies or wavevectors of plane waves of the ...

  6. Crystal structure - Wikipedia

    en.wikipedia.org/wiki/Crystal_structure

    Crystal structure of table salt (sodium in purple, chlorine in green). In crystallography, crystal structure is a description of ordered arrangement of atoms, ions, or molecules in a crystalline material. [1]

  7. Scherrer equation - Wikipedia

    en.wikipedia.org/wiki/Scherrer_Equation

    For sufficiently large m the pair of planes are essentially uncorrelated, in the sense that the uncertainty in their relative positions is so large that it is comparable to the lattice spacing, a. This defines a correlation length, λ {\displaystyle \lambda } , defined as the separation when the width of p m {\displaystyle p_{m}} , which is m 1 ...

  8. Powder diffraction - Wikipedia

    en.wikipedia.org/wiki/Powder_diffraction

    The fundamental physics upon which the technique is based provides high precision and accuracy in the measurement of interplanar spacings, sometimes to fractions of an Ångström, resulting in authoritative identification frequently used in patents, criminal cases and other areas of law enforcement. The ability to analyze multiphase materials ...

  9. Lattice constant - Wikipedia

    en.wikipedia.org/wiki/Lattice_constant

    Unit cell definition using parallelepiped with lengths a, b, c and angles between the sides given by α, β, γ [1]. A lattice constant or lattice parameter is one of the physical dimensions and angles that determine the geometry of the unit cells in a crystal lattice, and is proportional to the distance between atoms in the crystal.