Search results
Results from the WOW.Com Content Network
An infinite series of any rational function of can be reduced to a finite series of polygamma functions, by use of partial fraction decomposition, [8] as explained here. This fact can also be applied to finite series of rational functions, allowing the result to be computed in constant time even when the series contains a large number of terms.
The sum of the series is a random variable whose probability density function is close to for values between and , and decreases to near-zero for values greater than or less than . Intermediate between these ranges, at the values ± 2 {\displaystyle \pm 2} , the probability density is 1 8 − ε {\displaystyle {\tfrac {1}{8}}-\varepsilon } for ...
The Basel problem is a problem in mathematical analysis with relevance to number theory, concerning an infinite sum of inverse squares.It was first posed by Pietro Mengoli in 1650 and solved by Leonhard Euler in 1734, [1] and read on 5 December 1735 in The Saint Petersburg Academy of Sciences. [2]
Similarly, in a series, any finite groupings of terms of the series will not change the limit of the partial sums of the series and thus will not change the sum of the series. However, if an infinite number of groupings is performed in an infinite series, then the partial sums of the grouped series may have a different limit than the original ...
In mathematics, the infinite series 1 / 2 + 1 / 4 + 1 / 8 + 1 / 16 + ··· is an elementary example of a geometric series that converges absolutely. The sum of the series is 1. In summation notation, this may be expressed as
The number e can be expressed as the sum of the following infinite series: e x = ∑ k = 0 ∞ x k k ! {\displaystyle e^{x}=\sum _{k=0}^{\infty }{\frac {x^{k}}{k!}}} for any real number x . In the special case where x = 1 or −1, we have:
Therefore, every method that gives a finite value to the sum 1 + 2 + 3 + ... In the same publication, Euler writes that the sum of 1 + 1 + 1 + 1 + ⋯ is infinite.
Summations of infinite sequences are called series. They involve the concept of limit, and are not considered in this article. The summation of an explicit sequence is denoted as a succession of additions. For example, summation of [1, 2, 4, 2] is denoted 1 + 2 + 4 + 2, and results in 9, that is, 1 + 2 + 4 + 2 = 9.