enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Four-dimensional space - Wikipedia

    en.wikipedia.org/wiki/Four-dimensional_space

    Four-dimensional space (4D) is the mathematical extension of the concept of three-dimensional space (3D). Three-dimensional space is the simplest possible abstraction of the observation that one needs only three numbers, called dimensions , to describe the sizes or locations of objects in the everyday world.

  3. Five-dimensional space - Wikipedia

    en.wikipedia.org/wiki/Five-dimensional_space

    The first approach is space-time-matter, which utilizes an unrestricted group of 5D coordinate transforms to derive new solutions of the Einstein's field equations that agree with the corresponding classical solutions in 4D spacetime. [8] Another 5D representation describes quantum physics from a thermal-space-time ensemble perspective and ...

  4. List of mathematical shapes - Wikipedia

    en.wikipedia.org/wiki/List_of_mathematical_shapes

    Facet, an (n-1)-dimensional element; Ridge, an (n-2)-dimensional element; Peak, an (n-3)-dimensional element; For example, in a polyhedron (3-dimensional polytope), a face is a facet, an edge is a ridge, and a vertex is a peak. Vertex figure: not itself an element of a polytope, but a diagram showing how the elements meet.

  5. Perovskite - Wikipedia

    en.wikipedia.org/wiki/Perovskite

    B-site ions, on the corners of the lattice, are 3d, 4d, and 5d transition metal elements. The A-site cations are in 12-fold coordination with the anions, while the B-site cations are in 6-fold coordination. A large number of metallic elements are stable in the perovskite structure if the Goldschmidt tolerance factor t is in the range of 0.75 to ...

  6. Electron configuration - Wikipedia

    en.wikipedia.org/wiki/Electron_configuration

    Qualitatively, for example, the 4d elements have the greatest concentration of Madelung anomalies, because the 4d–5s gap is larger than the 3d–4s and 5d–6s gaps. [ 22 ] For the heavier elements, it is also necessary to take account of the effects of special relativity on the energies of the atomic orbitals, as the inner-shell electrons ...

  7. 5-cell - Wikipedia

    en.wikipedia.org/wiki/5-cell

    In geometry, the 5-cell is the convex 4-polytope with Schläfli symbol {3,3,3}. It is a 5-vertex four-dimensional object bounded by five tetrahedral cells. It is also known as a C 5, hypertetrahedron, pentachoron, [1] pentatope, pentahedroid, [2] tetrahedral pyramid, or 4-simplex (Coxeter's polytope), [3] the simplest possible convex 4-polytope, and is analogous to the tetrahedron in three ...

  8. How to watch the Quadrantids, one of the strongest meteor ...

    www.aol.com/watch-quadrantids-first-meteor...

    The Quadrantid meteor shower is one of the strongest, and quickest, meteor showers of the year. Here’s what you need to know to observe it during peak activity.

  9. Relativistic quantum chemistry - Wikipedia

    en.wikipedia.org/wiki/Relativistic_quantum_chemistry

    The electronic transition from the 5d orbital to the 6s orbital is responsible for this absorption. An analogous transition occurs in silver, but the relativistic effects are smaller than in gold. While silver's 4d orbital experiences some relativistic expansion and the 5s orbital contraction, the 4d–5s distance in silver is much greater than ...