Search results
Results from the WOW.Com Content Network
The electric field is defined as a vector field that associates to each point in space the force per unit of charge exerted on an infinitesimal test charge at rest at that point. [2] [3] [4] The SI unit for the electric field is the volt per meter (V/m), which is equal to the newton per coulomb (N/C). [5]
electric flux: volt metre: V⋅m kg⋅m 3 ⋅s −3 ⋅A −1: E electric field strength volt per metre: V/m = N/C kg⋅m⋅A −1 ⋅s −3: D electric displacement field: coulomb per square metre: C/m 2: A⋅s⋅m −2: ε permittivity: farad per metre: F/m kg −1 ⋅m −3 ⋅A 2 ⋅s 4: χ e electric susceptibility (dimensionless) 1 1 p ...
The following examples are listed in the ascending order of the magnetic-field strength. 3.2 × 10 −5 T (31.869 μT) – strength of Earth's magnetic field at 0° latitude, 0° longitude; 4 × 10 −5 T (40 μT) – walking under a high-voltage power line [9] 5 × 10 −3 T (5 mT) – the strength of a typical refrigerator magnet
Here subscripts e and m are used to differ between electric and magnetic charges. The definitions for monopoles are of theoretical interest, although real magnetic dipoles can be described using pole strengths. There are two possible units for monopole strength, Wb (Weber) and A m (Ampere metre).
Energy required to move a unit charge through an electric field from a reference point volt (V = J/C) L 2 M T −3 I −1: extensive, scalar Electrical resistance: R: Electric potential per unit electric current ohm (Ω = V/A) L 2 M T −3 I −2: extensive, scalar, assumes linearity Electrical resistivity: ρ e: Bulk property equivalent of ...
In physics, field strength is the magnitude of a vector-valued field (e.g., in volts per meter, V/m, for an electric field E). [1] For example, an electromagnetic field has both electric field strength and magnetic field strength .
The electric field strength at a specific point can be determined from the power delivered to the transmitting antenna, its geometry and radiation resistance. Consider the case of a center-fed half-wave dipole antenna in free space, where the total length L is equal to one half wavelength (λ/2).
The density of these lines corresponds to the electric field strength, which could also be called the electric flux density: the number of "lines" per unit area. Electric flux is directly proportional to the total number of electric field lines going through a surface. For simplicity in calculations it is often convenient to consider a surface ...