enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Bootstrap aggregating - Wikipedia

    en.wikipedia.org/wiki/Bootstrap_aggregating

    Bootstrap aggregating, also called bagging (from bootstrap aggregating) or bootstrapping, is a machine learning (ML) ensemble meta-algorithm designed to improve the stability and accuracy of ML classification and regression algorithms.

  3. Data model - Wikipedia

    en.wikipedia.org/wiki/Data_model

    Overview of a data-modeling context: Data model is based on Data, Data relationship, Data semantic and Data constraint. A data model provides the details of information to be stored, and is of primary use when the final product is the generation of computer software code for an application or the preparation of a functional specification to aid a computer software make-or-buy decision.

  4. Design matrix - Wikipedia

    en.wikipedia.org/wiki/Design_matrix

    The design matrix has dimension n-by-p, where n is the number of samples observed, and p is the number of variables measured in all samples. [4] [5]In this representation different rows typically represent different repetitions of an experiment, while columns represent different types of data (say, the results from particular probes).

  5. Aggregate function - Wikipedia

    en.wikipedia.org/wiki/Aggregate_function

    The listagg function, as defined in the SQL:2016 standard [2] aggregates data from multiple rows into a single concatenated string. In the entity relationship diagram , aggregation is represented as seen in Figure 1 with a rectangle around the relationship and its entities to indicate that it is being treated as an aggregate entity.

  6. Data modeling - Wikipedia

    en.wikipedia.org/wiki/Data_modeling

    The ANSI/SPARC three level architecture. This shows that a data model can be an external model (or view), a conceptual model, or a physical model. This is not the only way to look at data models, but it is a useful way, particularly when comparing models. [1] In 1975 ANSI described three kinds of data-model instance: [5]

  7. Random forest - Wikipedia

    en.wikipedia.org/wiki/Random_forest

    Illustration of training a Random Forest model. The training dataset (in this case, of 250 rows and 100 columns) is randomly sampled with replacement n times. Then, a decision tree is trained on each sample. Finally, for prediction, the results of all n trees are aggregated to produce a final decision.

  8. Aggregate (data warehouse) - Wikipedia

    en.wikipedia.org/wiki/Aggregate_(data_warehouse)

    An aggregate is a type of summary used in dimensional models of data warehouses to shorten the time it takes to provide answers to typical queries on large sets of data. The reason why aggregates can make such a dramatic increase in the performance of a data warehouse is the reduction of the number of rows to be accessed when responding to a query.

  9. Data parallelism - Wikipedia

    en.wikipedia.org/wiki/Data_parallelism

    Data parallelism Model parallelism Same model is used for every thread but the data given to each of them is divided and shared. Same data is used for every thread, and model is split among threads. It is fast for small networks but very slow for large networks since large amounts of data needs to be transferred between processors all at once.