Search results
Results from the WOW.Com Content Network
The power rule for differentiation was derived by Isaac Newton and Gottfried Wilhelm Leibniz, each independently, for rational power functions in the mid 17th century, who both then used it to derive the power rule for integrals as the inverse operation. This mirrors the conventional way the related theorems are presented in modern basic ...
We begin with the properties that are immediate consequences of the definition as a power series: e 0 = I; exp(X T) = (exp X) T, where X T denotes the transpose of X. exp(X ∗) = (exp X) ∗, where X ∗ denotes the conjugate transpose of X. If Y is invertible then e YXY −1 = Ye X Y −1. The next key result is this one:
The most general power rule is the functional power rule: for any functions and , ′ = () ′ = (′ + ′ ), wherever both sides are well defined. Special cases: If f ( x ) = x a {\textstyle f(x)=x^{a}} , then f ′ ( x ) = a x a − 1 {\textstyle f'(x)=ax^{a-1}} when a {\textstyle a} is any nonzero real number and x {\textstyle x} is ...
X = X(t) is a C 1 (continuously differentiable) path in the Lie algebra with derivative X′(t) = dX(t) / dt . The argument t is omitted where not needed. ad X is the linear transformation of the Lie algebra given by ad X (Y) = [X, Y]. It is the adjoint action of a Lie algebra on itself. The fraction 1 − exp(−ad X) / ad X is ...
The proof of the general Leibniz rule [2]: 68–69 proceeds by induction. Let and be -times differentiable functions.The base case when = claims that: ′ = ′ + ′, which is the usual product rule and is known to be true.
Exponential functions with bases 2 and 1/2. In mathematics, the exponential function is the unique real function which maps zero to one and has a derivative equal to its value. . The exponential of a variable is denoted or , with the two notations used interchangeab
It is particularly common when the equation y = f(x) is regarded as a functional relationship between dependent and independent variables y and x. Leibniz's notation makes this relationship explicit by writing the derivative as: [ 1 ] d y d x . {\displaystyle {\frac {dy}{dx}}.}
Euler's formula is ubiquitous in mathematics, physics, chemistry, and engineering. The physicist Richard Feynman called the equation "our jewel" and "the most remarkable formula in mathematics". [2] When x = π, Euler's formula may be rewritten as e iπ + 1 = 0 or e iπ = −1, which is known as Euler's identity.