Search results
Results from the WOW.Com Content Network
Air density, like air pressure, decreases with increasing altitude. It also changes with variations in atmospheric pressure, temperature and humidity. At 101.325 kPa (abs) and 20 °C (68 °F), air has a density of approximately 1.204 kg/m 3 (0.0752 lb/cu ft), according to the International Standard Atmosphere (ISA).
= molar mass of Earth's air: 0.0289644 kg/mol The value of subscript b ranges from 0 to 6 in accordance with each of seven successive layers of the atmosphere shown in the table below. The reference value for ρ b for b = 0 is the defined sea level value, ρ 0 = 1.2250 kg/m 3 or 0.0023768908 slug/ft 3 .
at each geopotential altitude, where g is the standard acceleration of gravity, and R specific is the specific gas constant for dry air (287.0528J⋅kg −1 ⋅K −1). The solution is given by the barometric formula. Air density must be calculated in order to solve for the pressure, and is used in calculating dynamic pressure for moving vehicles.
The density altitude is the altitude relative to standard atmospheric conditions at which the air density would be equal to the indicated air density at the place of observation. In other words, the density altitude is the air density given as a height above mean sea level .
For example, a temperature deviation of +8 °C means that the air at any given altitude is 8 °C (14 °F) warmer than what standard day conditions and the measurement altitude would predict, and would indicate a higher density altitude. These variations are extremely important to both meteorologists and aviators, as they strongly determine the ...
Water density calculator Archived July 13, 2011, at the Wayback Machine Water density for a given salinity and temperature. Liquid density calculator Select a liquid from the list and calculate density as a function of temperature. Gas density calculator Calculate density of a gas for as a function of temperature and pressure.
If the density of a gas is persistent, then it isn't really behaving like a gas. Instead it is behaving like an incompressible fluid , or liquid , and this situation looks more like an ocean. Assuming density is constant, then a graph of pressure vs altitude will have a retained slope, since the weight of the ocean over head is directly ...
The amount of mass that can be lifted by hydrogen in air per unit volume at sea level, equal to the density difference between hydrogen and air, is: (1.292 - 0.090) kg/m 3 = 1.202 kg/m 3. and the buoyant force for one m 3 of hydrogen in air at sea level is: 1 m 3 × 1.202 kg/m 3 × 9.8 N/kg= 11.8 N