enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Gradient descent - Wikipedia

    en.wikipedia.org/wiki/Gradient_descent

    Gradient descent with momentum remembers the solution update at each iteration, and determines the next update as a linear combination of the gradient and the previous update. For unconstrained quadratic minimization, a theoretical convergence rate bound of the heavy ball method is asymptotically the same as that for the optimal conjugate ...

  3. Regularized least squares - Wikipedia

    en.wikipedia.org/wiki/Regularized_least_squares

    This solution closely resembles that of standard linear regression, with an extra term . If the assumptions of OLS regression hold, the solution w = ( X T X ) − 1 X T y {\displaystyle w=\left(X^{\mathsf {T}}X\right)^{-1}X^{\mathsf {T}}y} , with λ = 0 {\displaystyle \lambda =0} , is an unbiased estimator, and is the minimum-variance linear ...

  4. Iteratively reweighted least squares - Wikipedia

    en.wikipedia.org/wiki/Iteratively_reweighted...

    IRLS is used to find the maximum likelihood estimates of a generalized linear model, and in robust regression to find an M-estimator, as a way of mitigating the influence of outliers in an otherwise normally-distributed data set, for example, by minimizing the least absolute errors rather than the least square errors.

  5. Linear regression - Wikipedia

    en.wikipedia.org/wiki/Linear_regression

    Like all forms of regression analysis, linear regression focuses on the conditional probability distribution of the response given the values of the predictors, rather than on the joint probability distribution of all of these variables, which is the domain of multivariate analysis. Linear regression is also a type of machine learning algorithm ...

  6. Learning rate - Wikipedia

    en.wikipedia.org/wiki/Learning_rate

    While the descent direction is usually determined from the gradient of the loss function, the learning rate determines how big a step is taken in that direction. A too high learning rate will make the learning jump over minima but a too low learning rate will either take too long to converge or get stuck in an undesirable local minimum.

  7. Gradient method - Wikipedia

    en.wikipedia.org/wiki/Gradient_method

    In optimization, a gradient method is an algorithm to solve problems of the form min x ∈ R n f ( x ) {\displaystyle \min _{x\in \mathbb {R} ^{n}}\;f(x)} with the search directions defined by the gradient of the function at the current point.

  8. Levenberg–Marquardt algorithm - Wikipedia

    en.wikipedia.org/wiki/Levenberg–Marquardt...

    The LMA interpolates between the Gauss–Newton algorithm (GNA) and the method of gradient descent. The LMA is more robust than the GNA, which means that in many cases it finds a solution even if it starts very far off the final minimum. For well-behaved functions and reasonable starting parameters, the LMA tends to be slower than the GNA.

  9. Differentiable programming - Wikipedia

    en.wikipedia.org/wiki/Differentiable_programming

    The C++ heyoka and python package heyoka.py make large use of this technique to offer advanced differentiable programming capabilities (also at high orders). A package for the Julia programming language – Zygote – works directly on Julia's intermediate representation. [7] [11] [5]