Search results
Results from the WOW.Com Content Network
The wave equation is a second-order linear partial differential equation for the description of waves or standing wave fields such as mechanical waves (e.g. water waves, sound waves and seismic waves) or electromagnetic waves (including light waves). It arises in fields like acoustics, electromagnetism, and fluid dynamics.
The group velocity is the rate at which the wave envelope, i.e. the changes in amplitude, propagates. The wave envelope is the profile of the wave amplitudes; all transverse displacements are bound by the envelope profile.
For a monochromatic propagating electromagnetic wave, such as a plane wave or a Gaussian beam, if E is the complex amplitude of the electric field, then the time-averaged energy density of the wave, travelling in a non-magnetic material, is given by: = | |, and the local intensity is obtained by multiplying this expression by the wave velocity
This concept can be visualized by imagining a clock with a hand that turns at constant speed, making a full turn every seconds, and is pointing straight up at time . The phase φ ( t ) {\displaystyle \varphi (t)} is then the angle from the 12:00 position to the current position of the hand, at time t {\displaystyle t} , measured clockwise .
The Schrödinger equation determines how wave functions evolve over time, and a wave function behaves qualitatively like other waves, such as water waves or waves on a string, because the Schrödinger equation is mathematically a type of wave equation. This explains the name "wave function", and gives rise to wave–particle duality.
Since the amplitude to travel from x to y after a time t + t ' can be considered in two steps, the propagator obeys the composition identity, (;) (; ′) = (; + ′) , which can be interpreted as follows: the amplitude to travel from x to z in time t + t ' is the sum of the amplitude to travel from x to y in time t, multiplied by the amplitude ...
In physics and engineering, the envelope of an oscillating signal is a smooth curve outlining its extremes. [1] The envelope thus generalizes the concept of a constant amplitude into an instantaneous amplitude. The figure illustrates a modulated sine wave varying between an upper envelope and a lower envelope. The envelope function may be a ...
Wave numbers and wave vectors play an essential role in optics and the physics of wave scattering, such as X-ray diffraction, neutron diffraction, electron diffraction, and elementary particle physics. For quantum mechanical waves, the wavenumber multiplied by the reduced Planck constant is the canonical momentum. Wavenumber can be used to ...