Search results
Results from the WOW.Com Content Network
In computer science, iterative deepening search or more specifically iterative deepening depth-first search [1] (IDS or IDDFS) is a state space/graph search strategy in which a depth-limited version of depth-first search is run repeatedly with increasing depth limits until the goal is found.
Iterative deepening A* (IDA*) is a graph traversal and path search algorithm that can find the shortest path between a designated start node and any member of a set of goal nodes in a weighted graph. It is a variant of iterative deepening depth-first search that borrows the idea to use a heuristic function to conservatively estimate the ...
The searches in and were both done with a method equivalent to iterative deepening A* (IDA*). The search in G 1 ∖ G 0 {\displaystyle G_{1}\setminus G_{0}} needs at most 12 moves and the search in G 1 {\displaystyle G_{1}} at most 18 moves, as Michael Reid showed in 1995.
MTD(f) is an alpha-beta game tree search algorithm modified to use ‘zero-window’ initial search bounds, and memory (usually a transposition table) to reuse intermediate search results. MTD(f) is a shortened form of MTD(n,f) which stands for Memory-enhanced Test Driver with node ‘n’ and value ‘f’. [ 1 ]
For general graphs, replacing the stack of the iterative depth-first search implementation with a queue would also produce a breadth-first search algorithm, although a somewhat nonstandard one. [7] Another possible implementation of iterative depth-first search uses a stack of iterators of the list of neighbors of a node, instead of a stack of ...
For a grid map from a video game, using the Taxicab distance or the Chebyshev distance becomes better depending on the set of movements available (4-way or 8-way). If the heuristic h satisfies the additional condition h ( x ) ≤ d ( x , y ) + h ( y ) for every edge ( x , y ) of the graph (where d denotes the length of that edge), then h is ...
The Floyd–Warshall algorithm is an example of dynamic programming, and was published in its currently recognized form by Robert Floyd in 1962. [3] However, it is essentially the same as algorithms previously published by Bernard Roy in 1959 [4] and also by Stephen Warshall in 1962 [5] for finding the transitive closure of a graph, [6] and is closely related to Kleene's algorithm (published ...
In computer science, graph traversal (also known as graph search) refers to the process of visiting (checking and/or updating) each vertex in a graph.Such traversals are classified by the order in which the vertices are visited.